Paleoceanography and

A G s

> SPACE SCIENCE

Paleoclimatology

RESEARCH ARTICLE
10.1029/2022PA004423

Key Points:

e !%Be dating of moraines indicates
at least four glacier maxima in the
Mongolian Altai during the Last
Glaciation

e The timing of Mongolian glacier
maxima overlapped with the global
Last Glacial Maximum

e Deglaciation began as early as ~18.8
kyrs ago and interglacial conditions
were achieved by ~16.0 kyrs ago

Supporting Information:

Supporting Information may be found in
the online version of this article.

Correspondence to:

P. D. Strand,
peter.strand @maine.edu

Citation:

Strand, P. D., Putnam, A. E., Sambuu,
O., Putnam, D. E., Denton, G. H.,
Schaefer, J. M., et al. (2022). A '°Be
moraine chronology of the Last
Glaciation and termination at 49°N in
the Mongolian Altai of Central Asia.
Paleoceanography and Paleoclimatology,
37, €2022PA004423. https://doi.
0rg/10.1029/2022PA004423

Received 24 MAR 2021
Accepted 12 APR 2022

Author Contributions:

Conceptualization: Peter D. Strand,
David E. Putnam, George H. Denton,
Joerg M. Schaefer

Data curation: Peter D. Strand, Daniel
G. Cole

Formal analysis: Peter D. Strand, Joerg
M. Schaefer

Investigation: Peter D. Strand, Oyungerel
Sambuu, David E. Putnam, Mariah J.
Radue, Ariunsanaa Dorj, Pagamsuren
Amarsaikhan, Jessica Stevens
Resources: Oyungerel Sambuu, David E.
Putnam, Mariah J. Radue

Supervision: Oyungerel Sambuu, David
E. Putnam, George H. Denton
Visualization: Peter D. Strand, Daniel
G. Cole

Writing - original draft: Peter D.
Strand, George H. Denton, Mariah J.
Radue

© 2022. American Geophysical Union.
All Rights Reserved.

A "Be Moraine Chronology of the Last Glaciation and
Termination at 49°N in the Mongolian Altai of Central Asia

Peter D. Strand! (2, Aaron E. Putnam!, Oyungerel Sambuu?, David E. Putnam?,
George H. Denton’, Joerg M. Schaefer?, Mariah J. Radue!, Ariunsanaa Dorj* (2,
Pagamsuren Amarsaikhan?, Jessica Stevens® (2, and Daniel G. Cole®

!School of Earth and Climate Sciences, Climate Change Institute, University of Maine, Orono, ME, USA, 2School of Geology
and Mining Engineering, Mongolian University of Science and Technology, Ulaanbaatar, Mongolia, *College of Arts and
Sciences, Environmental Science and Sustainability, University of Maine at Presque Isle, Presque Isle, ME, USA, *Lamont-
Doherty Earth Observatory, Palisades, NY, USA, >Gary Comer College Prep, Chicago, IL, USA, *Smithsonian Institution,
National Museum of Natural History, Washington, DC, USA

Abstract Determining what caused the global Last Glaciation and last glacial termination, despite opposing
orbital summer insolation signatures between the polar hemispheres, remains a puzzle of paleoclimatology.
This problem can be addressed by comparing chronologies of glaciation from different latitudes and different
climatic regimes in both hemispheres. Here, we present a '°Be surface-exposure chronology of glacial
landforms constructed during and since the local Last Glaciation in the continental environment of interior
Asia in the high Mongolian Altai (49°N, 88°E). Four belts of lateral moraines document maximal phases of
the former Khoton glacier at 35,400 + 980 years ago, 23,430 + 850 years ago, 20,780 + 610 years ago, and
19,520 + 550 years ago. Our chronology indicates that deglaciation from these maximal positions began as
early as 18,810 + 510 years ago, was well underway by 17,680 + 510 years ago, and was nearly completed by
16,040 + 490 years ago. Overall, our chronology shows that glaciation in western Mongolia coincided with
the global Last Glacial Maximum and that extensive recession from glacial-to-interglacial limits took place
rapidly early in the last glacial termination during Heinrich Stadial 1. The transition from glacial to interglacial
conditions led to the demise of large Northern Hemisphere ice sheets and increase in radiative forcing agents
by several millennia. We suggest that this rapid switch in the mode of glaciation implies the involvement

of an additional climatic factor that could have produced locally rapid warming and deglaciation ~18,800—
16,000 years ago.

Plain Language Summary Leading hypotheses for the causes of ice ages and their terminations
involve important roles for ice sheet feedbacks and greenhouse gases in driving global glacial cycles. Mountain
glacier length records afford valuable insight into past climate conditions because mountain glaciers are highly
sensitive to the effects of atmospheric temperature changes. Here, we use glacial geology and surface-exposure
dating to chart the ice-age history of a mountain glacier system located in the Mongolian Altai of Central Asia.
Results from the Altai show that the ancient glacier achieved ice-age maxima at the same time as glaciers in
midlatitude Southern Alps of New Zealand on the opposite side of the world. Likewise, rapid and extensive
glacier recession took place in both locations between ~18,000 and 16,000 years ago—signaling an early and
rapid termination of ice age conditions in these two bipolar midlatitude locations. The rapid climate warming
that drove glacier retreat in western Mongolia led to the demise of the huge Northern Hemisphere ice sheets by
several millennia and even outpaced the rise of atmospheric CO,. Any solution to the ice-age climate puzzle
must account for synchrony of glacial maxima as well as coeval rapid deglaciation in Central Asia and the
Southern Hemisphere.

1. Introduction

A long-standing cornerstone of ice-age climate change originated when Murphy (1869) and Milankovitch (1941)
both tied cool northern summers originating from orbital variations to the growth of ice-age glaciers. Indeed,
changes in global ice volume, dominated by Northern Hemisphere ice sheets, exhibited frequencies consistent
with orbitally induced summer seasonal insolation changes at 65°N latitude (Broecker, 1966; Broecker & van
Donk, 1970; Hays et al., 1976; Imbrie & Imbrie, 1980; Roe, 2006). For example, Northern Hemisphere ice sheets
achieved their Last Glacial Maximum (LGM) positions between ~26 and 19 ka (Clark et al., 2009; Clark &
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Mix, 2002; Mix et al., 2001), an interval of decreased summer insolation intensity at northern latitudes. More-
over, global sea level was lowest during the LGM and rose during the last termination, attributed largely to the
growth and subsequent melting of the Northern Hemisphere ice sheets that accompanied decreasing and increas-
ing northern summer insolation intensity (Lambeck et al., 2014; Peltier & Fairbanks, 2006; Raymo et al., 2006).

However, there exists a problem with the orbitally produced summer insolation driver for late Quaternary ice ages
proposed by Murphy (1869) and Milankovitch (1941). Namely, this mechanism should have produced changes
in ice-age glacier extents that were antiphased between middle latitudes of the two polar hemispheres due to
opposing effects of orbital precession on summer insolation intensity. However, Mercer (1984) showed paradox-
ically that maximal glacial extent during the LGM was nearly synchronous for the Patagonian Ice Field in the
Andes of South America and for the Laurentide Ice Sheet in the Great Lakes region of North America. Moreover,
Mercer (1984) pointed out that the termination was generally synchronous between the polar hemispheres despite
opposite patterns of insolation change. Quoting Broecker (1978), Mercer (1984) referred to such globally simul-
taneous climatic change as “a fly in the insolation ointment of the Milankovitch hypothesis.” This problem was
referred to as “Mercer's Paradox” in Denton et al. (2021).

Here, we seek to address Mercer's Paradox by evaluating the timing of the LGM and last glacial termination
of mountain glaciers from '°Be exposure dating of moraine systems at either end of an Australasian interhem-
ispheric transect in the Mongolia Altai at 49°N and in the Southern Alps of New Zealand at 44°S. We present
a 'Be surface-exposure chronology of glacial landforms of the Khoton Nuur valley in the high Mongolian Altai
(49°N, 88°E). We then compare the Mongolian chronologic record with comparable chronologies from else-
where in Eurasia and then with those from the Southern Alps of New Zealand. In addition to being located at
midlatitudes in opposite hemispheres (comparable to Mercer's interhemispheric comparison for the Americas),
these glacier settings are located in distinctly different environments with the Mongolian Altai centered within
Earth's largest continent and the Southern Alps of New Zealand within the Earth's largest ocean. On the basis of
this comparison, we consider whether radiative forcing agents, ice-sheet feedbacks, and/or interhemispheric heat
redistribution (i.e., the bipolar seesaw) were sufficient to explain the Last Glaciation and termination at these
midlatitude locations. If Mercer's Paradox applies to midlatitude environments within the continental climates of
interior Asia and in the maritime climatic setting of the Southern Alps, then an important problem would be to
determine what factors would have produced simultaneous climatic change in the middle latitudes of both polar
hemispheres under such different environmental conditions.

2. Physical Setting of the Altai Mountains

The Altai Mountains extend from the Gobi Desert to the West Siberian Plain (45-52°N to 89-94°E). They
transect the political boundaries of Mongolia, China, Russia, and Kazakhstan (Figure 1). The mountains formed
through subduction zone processes on the margins of the Eurasian continent as part of the Central Asian Orogenic
Belt (Windley et al., 2002). The Mongolian Altai features the Tavan Bogd massif, which includes the highest
peaks of the range. Local lithologies include metamorphosed quartzo-feldspathic graywacke sandstones, granites,
othogneisses, and intrusive volcanics (Windley et al., 2002).

The Altai are situated near the geographical center of Eurasia, where atmospheric temperatures bear a dominant
“continental” signature related to radiative heating of the interior Asian landmass (McKinnon et al., 2013). The
climate of Mongolia features dramatic seasonal temperature swings with monthly mean atmospheric tempera-
tures ranging from —30°C in winter months to +25°C in summer months, corresponding to a seasonal contrast of
~55°C (Lehmkuhl et al., 2011). A meteorological station at 3,040 m a.s.l. near the Potanin Glacier in the Mongo-
lian Altai recorded mean summer temperatures of 3.4°C and mean annual temperatures of —8.8°C between CE
2007 and CE 2008 (Konya et al., 2010). The Altai receive orographic precipitation from moisture transport via
the boreal westerlies, leading to spatial variations in precipitation amounts. Precipitation totals are estimated
to be greater than 1,000 mm annually on the high peaks of western Mongolia (Konya et al., 2013; Lehmkuhl
etal., 2011, 2016; Nakazawa et al., 2012, 2015).

This region is a UNESCO World Heritage Site known for an extensive assemblage of petroglyphs pecked onto
glacially molded bedrock and onto glacial erratics in the region. These petroglyphs depict the domestication of
the horse, technological innovations, such as horse-drawn carts and the invention of the stirrup, and the rise of the
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3. Climatic Significance of Mongolian Glaciers

90°E

40°E 80°E  120E The modern glacierized area of the entire Altai is estimated to be 1,562 km?

™ map extent (Blomdin et al., 2016). Yabuki and Ohata (2009) determined that there
el are ~578 present-day glaciers with an estimated total glaciated area of

N ~424 km? in the Mongolian sector of the Altai. Included is the Potanin
95'E Glacier—the largest of the Mongolian Altai (Yabuki & Ohata, 2009). Kamp

Figure 1. Topographic and political map of the western Mongolia region.
Locations from the text are noted. Location of Figure 2 is outlined. Imagery

from ESRI.

and Pan (2015) calculated that the total glacierized area in Mongolia has
decreased by 28% from 1990 to 2010 based on Landsat imagery analysis.
Total glacierized area in the nearby Tavan Bogd massif is estimated to have
decreased by ~43% since the Late Holocene (Ganiushkin et al., 2015, 2018;
Lehmkuhl et al., 2011). Modern equilibrium line altitudes (ELAs) range from ~3,000 m a.s.l. in the relatively
humid northwestern ranges of the Altai to ~3,700 m a.s.l. in the semiarid and arid southeastern Gobi Altai
(Lehmkuhl et al., 2004, 2016).

Mountain glaciers in midlatitude climates are controlled primarily by the summer melt and therefore react
quickly to atmospheric temperature changes (Anderson & Mackintosh, 2006; Anderson et al., 2010; Mackin-
tosh et al., 2017; Oerlemans, 1994; Rupper et al., 2009; Rupper & Roe, 2008). We chose the Mongolian Altai
study area specifically because glacier mass balance has been shown to be dominantly sensitive to temperature
(Khalzan et al., 2022; Rupper & Roe, 2008; Rupper et al., 2009). Modern Mongolian glaciers are “summer accu-
mulation-type glaciers,” where peak ablation and mass accumulation occur simultaneously in the summer season
(Khalzan et al., 2022). These types of glaciers have been identified as being particularly sensitive to atmospheric
temperature changes (Ageta & Higuchi, 1984; Khalzan et al., 2022; Litt et al., 2019; Rupper et al., 2009). Khalzan
et al. (2022) quantified Mongolian glacier mass-balance sensitivity to changes in temperature and precipitation
and showed that an ~30% increase in precipitation would be required to offset the effects of a 1°C warming for
the nearby Potanin Glacier. It is worth noting that despite being located in differing precipitation regimes, all
Mongolian glaciers studied by Khalzan et al. (2022) currently exhibit negative mass balance and recession amid
rising summer temperatures.

Meltwater channels, outwash deposits, and other glaciofluvial features associated with moraine complexes in
the study area indicate that glaciers maintained melting ablation zones throughout the local Last Glaciation and
last glacial termination (Klinge et al., 2021; Lehmkuhl et al., 2016). This observation indicates that temper-
ature-driven surface melt has remained the dominant mode of ablation in the Mongolian Altai since the Last
Glaciation as it is today (Khalzan et al., 2022). Given modern observations of strong temperature sensitivity
of mountain glaciers to climate change (e.g., Hock et al., 2019; Hugonnet et al., 2021; Oerlemans, 2005; Zemp
et al., 2015), we have no reason to assume that this glacier sensitivity or the seasonality of accumulation and
ablation has changed markedly in the past for Altai glaciers. There are indications that the climate of Central Asia
may have even been marginally wetter during the LGM (Zhang & Li, 2022; Zhang et al., 2018), which according
to the mass-balance observations of Khalzan et al. (2022) and Rupper and Roe (2008) would have further reduced
Mongolian glacier sensitivity to precipitation changes during that time. For these reasons, mountain glaciers in
the Mongolian Altai are well situated to record regional temperature changes in the interior of the Asian continent
(Khalzan et al., 2022; Rupper & Roe, 2008; Rupper et al., 2009; Surazakov et al., 2007), and we interpret the
moraine chronology as reflecting changes in the past summer temperature.
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Figure 2. General glacial geomorphic map of the Khoton Nuur region of the western Mongolian Altai. Location within Mongolia is indicated within the inset map.
Boxes delineate detailed map areas shown in Figure 3. Geomorphological symbols are described in legend, inset.

4. Prior Work

The timing and magnitude of Pleistocene glacier advances in the broader Altai have been the subject of prior
investigations (Lehmkuhl et al., 2004, 2007, 2011, 2016; Blomdin et al., 2016; Dong et al., 2020; Gribenski
et al., 2016, 2018; Klinge et al., 2021; Yang et al., 2017). A number of chronologies indicate that full-glacial
configurations of Central Asian mountain glaciers were achieved not only during the global LGM in Marine
Isotope Stage (MIS) 2 (~29-14 ka; Lisiecki & Raymo, 2005), but also preceding the global LGM during MIS 3
(~57-29 ka; Lisiecki & Raymo, 2005) (Batbaatar et al., 2018; Blomdin et al., 2018; Dong et al., 2020; Gillespie
et al., 2008; Gribenski et al., 2016, 2018; Klinge et al., 2021; Krivonogov et al., 2012; Lehmkuhl et al., 2011;
Prokopenko et al., 2009; Rother et al., 2014). Debate remains as to whether glacial advances during the local Last
Glaciation were synchronous throughout Central Asia (e.g., Batbaatar et al., 2018); these issues may reflect the
scarcity of well-resolved glacial chronologies or lack of landform preservation.

5. Geomorphology

During recent glaciations, the westernmost and highest part of the Mongolian Altai featured an icefield that was
drained by prominent valley glaciers that extended ~50 km beyond their present-day limits. The glacier that occu-
pied the Khoton Nuur (Nuur is Mongolian for Lake) valley during recent glacial maxima (here called the “Khoton
glacier”) was fed by coalescent tributaries flowing from the Tsagaan-Sol and the Tsagaan-Us valleys into a major
lobe that constructed several moraines. Khoton Nuur and Khurgan Nuur (Khurgan Nuur is also known locally as
Khovd Nuur) now occupy moraine-dammed basins within a glacially eroded trough (Figure 1). Geomorphologi-
cal maps of the Khoton Nuur study area are shown in Figures 2 and 3. Photographs showing selected landforms
discussed in the text are shown in Figure 4.
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Figure 3. Detailed glacial geomorphic maps of glacial landforms in the Khoton Nuur region. Map symbols are described in Figure 2 legend.

The outermost and hence oldest glacial landforms consist of discontinuous moraine ridges and ground moraine
cut by intermittent former meltwater channels that impound Khurgan Nuur—the easternmost lake of the valley.
Located inboard of Khurgan Nuur is a sequence of four primary moraine belts with associated outwash plains
and meltwater channels that impound Khoton Nuur. Here, we refer to the four major moraine belts in the Khoton
Nuur area as (from oldest to youngest): Khoton I'V, Khoton III, Khoton II, and Khoton I. Cross-cutting landform
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relationships indicate that the Khoton III, Khoton II, and Khoton I landforms were constructed during the culmi-
nations of Khoton glacier advances. Inboard of the Khoton Nuur moraine complex, the landscape is dominated by
ice-molded bedrock mantled in places by erratic boulders, thin glacial drift, and patches of recessional moraine
ridges. About 60 km inboard of the terminal moraine that impounds Khoton Nuur is a small hanging tributary
valley nestled within the high Mongolian Altai just south of Takhilt Pass (here referred to as “Takhilt Valley”).
The mouth of Takhilt Valley features a boulder-rich lateral moraine that was constructed within ~5 km of a belt of
Late-Holocene moraines located at the head of the valley. This was the innermost, and hence youngest, landform
that we targeted for surface-exposure dating.

6. Methods
6.1. Geomorphic Mapping

We constructed glacial geomorphologic maps to aid in the interpretation of glacial landforms and to provide
context for samples collected for surface-exposure dating. Our maps were constructed in ArcGIS following the
style of Andersen et al. (1999) and using the digital symbology of (Figures 2, 3 and 5). We drew upon a combi-
nation of field observations and satellite imagery analysis to interpret the landforms. Our glacial geomorphologic
maps were developed using a 1-m resolution orthoimage mosaic obtained by targeted GeoEye (now Digital-
Globe) satellite photography as well as an ~1-3 m resolution digital elevation model (DEM) determined photo-
grammetrically from stereo image pairs acquired from those same satellite observations. In regions outside the
coverage of the GeoEye satellite imagery, we acquired high-resolution orthoimage mosaics using a DJI Phantom
4 drone and the Map Pilot software for Apple iPad. Image mosaics and DEMs (resolution ~50 cm/px) were
derived photogrammetrically from the aerial images using the Agisoft MetaShapePro software package and
georeferenced using ground-control points established with differential GPS techniques (see below). Examples
of drone imagery and elevation data sets are provided in Figure 5. For regions that were outside of the orthoimage
mosaic coverage, we used Google Earth, ESRI imagery data sets, and Shuttle Radar Transit Mapping (SRTM)
DEM as base maps.

6.2. "Be Surface Exposure Dating

Our field protocols for '°Be sample collection were based on the approach of Putnam et al. (2010) and Strand
et al. (2019). We targeted boulders rooted in stable positions on well-preserved moraine ridges. We also sampled
erratic boulders perched or resting on bedrock surfaces to establish a chronology of glacier recession and
ice-surface lowering. We avoided areas showing evidence for postdepositional modification by mass-wasting/
slope processes, fluvial reworking, or human disturbance, such as road building. We selected boulders with quartz-
rich lithologies, such as quartzo-feldspathic graywacke sandstones and granitoids. Boulders with steeply sloping
tops, fractured/deeply pitted surfaces, or evidence of spalling were avoided as were boulders exhibiting signs of
postdepositional movement. Whenever possible, we sampled from glacially polished, flat, or gently rounded top
surfaces of selected boulders. Preliminary analyses from a collection of angular boulders on a moraine ridge in
the Tsagaan-Sol area indicated that angular boulders are more prone to contain inherited '°Be (see Section S1.2.2
in Supporting Information S1). On the basis of those results, we modified our approach to select only boulders
with rounded surfaces and preserved glacial polish, indicating that the clasts had been subjected to sufficient
glacial abrasion during englacial transport to remove any inherited °Be that may have accumulated as a result
of prior exposure to cosmic radiation. Where possible, we sampled several boulders from each glacial landform.
Examples of boulders selected and sampled for '’Be exposure-age dating are shown in Figure 6.

We extracted rock samples using either quarry wedges and shims or else hammer and chisel. GPS coordinates and
elevations were measured for each sample using a Trimble Geo7x GPS unit. The GPS measurements were then
corrected against base-station data collected either from a fixed Trimble NetR9 unit or else from a Trimble Geo7x
unit located at our field camp, generally within ~10 km of the sample sites. Horizontal and vertical uncertainties
for differentially corrected GPS measurements were typically less than +1 m. For cases in which GPS points were
unable to be differentially corrected due to incomplete or missing base data, we extracted sample elevations from
a GeoEye-derived DEM (+1 m horizontal and +3 m vertical).
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Figure 4. Photographs showing landforms discussed in the text. (a) Vantage south-southeast along Khoton Moraine II
(48.691960°N, 88.363354°E). (b) Vantage from Biluut 3 south toward Khoton Nuur. In the foreground is Biluut 2 with Biluut
1 directly behind (48.654994°N, 88.351477°E). (c) Vantage southeast across Khoton Erratics II feature. Note the rounded,
polished boulders resting directly upon ice-molded bedrock (48.743641°N, 88.164212°E). (d. Vantage from Takhilt Valley
Moraine I southwest toward the Tsagaan-Sol Gol (48.971119°N, 88.080110°E).

We employed a combination of compass-clinometer to chart azimuthal elevations and bearings, respectively, of
the surrounding skyline for determining topographic shielding corrections. We measured the strike and dip of
each sampled surface using the GeoID™ application on a calibrated Apple iPad or else using a Brunton compass.
Topographic shielding corrections were later calculated using the University of Washington (UW) online calcu-

Figure 5. Tsagaan Sol landform elevation data and orthoimagery photogrammetrically derived from drone photographs. Left side shows ortho-mosaic (12.6 cm/px)

and right side shows DEM (50.5 cm/px).
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Figure 6. Examples of boulders sampled for '°Be surface-exposure dating. (a) Photograph, with vantage northwest, of an
~2-m high boulder on Khoton Moraine II. (b) Photograph, vantage west-northwest, of an ~1-m high boulder selected for
sampling at the base of Biluut 3. (c) Photograph, vantage north-northwest, of a large boulder rooted in Khoton Moraine I.
(d) Photograph, vantage south, of a glacial erratic boulder resting on till-mantled bedrock near Khoton Nuur. Khoton Nuur
is visible in the background. (e) Photograph, vantage north, of an ~1-m high glacial erratic boulder resting on till-mantled
bedrock in the Tsagaan-Sol Valley. (f) Photograph, vantage southwest, of a boulder embedded in Takhilt Moraine I.

lator available at http://stoneage.ice-d.org/math/skyline/skyline_in.html. Each boulder was photographed from
several vantages (some examples are shown in Figure 6) and also sketched in a notebook.

Samples were processed for 1°Be analysis at the University of Maine Glacial Geology and Geochronology Labo-
ratory and also at the Lamont-Doherty Earth Observatory Cosmogenic Isotope Laboratory. We followed the labo-
ratory protocols adapted from Schaefer et al. (2009) and Putnam et al. (2019), available online at https://umaine.
edu/earthclimate/research/glacial-geology-and-geochronology-research-group/cosmogenicisotope/. Whole-rock
samples were crushed to 125-710 pm grain-size fractions and boiled in H;PO, and NaOH solutions. Quartz
was separated from feldspar fractions using the froth flotation method described in Kawatra and Eisele (1992).
Remaining quartz was subjected to several rounds of etching in 2% and 5% HF/HNO, solutions. We measured Al,
Ca, Ti, Fe, and Be concentrations in the quartz using an Inductively Coupled Plasma Optical Emission Spectrom-
eter (ICP-OES) to verify purity before moving forward with ion chromatography steps. Once pure, quartz samples
were weighed, spiked with ~0.2 g of °Be carrier, and dissolved in concentrated HF. We used three °Be carriers
in this study: LDEO carrier 5 (initial Be concentration = 1,035 ppm), UMaine Phena 1A carrier (initial Be
concentration = 203 ppm), and VWR-Chemicals BDH Beryllium carrier (initial °Be concentration = 999 ppm).
All beryllium carrier concentrations have been corrected for evaporation effects following Putnam et al. (2019)
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AMS std
50.80 + 0.98 07KNSTD

(10%) (atoms/

["“Be] + 1o
gram)

0Be/Be +
11.35 £ 0.21

997

conc.
(ppm) 1o (107

()

Quartz Carrier Carrier
added
(g)

2.8862 0.2053

Shielding weight

cm™2) correction

2.7

Density
g
0.9889

Boulder size Sample

(LxW xH) thickness
(cm) (cm)
3.157

Elevation
(m a.s.l.)

Longitude
(DD)

(DD)
48.969240675 88.078976837 2681.35 220 x 155 x 101

Latitude

used
UMaine

CAMS

laboratory Laboratory

Sample
number
TKLT- BE45568

Table 1
Continued
Landform
name
Takhilt

16-02

Valley

Moraine 1

Takhilt

Valley

50.99 + 1.06 07KNSTD

14.97 + 0.31

997

3.8434 0.2052

0.9906

2.7

1.324

136 x 116 x 87

48.971588511 88.080177385 2728.50

UMaine

BE45569

TKLT-

16-05

Moraine 1

Takhilt

Valley

07KNSTD

44.02 +0.82 54.09 + 1.01

997

10.9181 0.2043

0.9907

2.7

2.142

180 x 100 x 96

48.972330472 88.081185382 2762.69

UMaine

BE45570

TKLT-

16-07

Moraine I

and are reported in Table 2. Samples were subjected to chromatography techniques to isolate the
Beryllium fraction following the methods of Schaefer et al. (2009) and references therein. BeOH
samples were then precipitated, oxidized to BeO by combusting at 900°C for 90 min, and finally
mixed with small amounts of niobium and packed into cathodes for Be analyses. All '’Be/°Be meas-
urements were conducted at the Lawrence-Livermore National Laboratory Center for Accelerator
Mass Spectrometry (LLNL-CAMS). Sample ratios were measured relative to the 07KNSTD stand-
ard ('°Be/’Be = 2.85e~'2; Nishiizumi et al., 2007). Measurements were then corrected for boron
contamination and for '°Be in procedural blanks. Reported sample °Be concentration uncertainties
have been propagated with uncertainties attending measured blank °Be concentrations (Table 2).
Analytical uncertainties are generally ~2%.

19Be surface-exposure age calculations were carried out using Version 3 of the online UW cosmo-
genic calculators (Balco, 2017; Balco et al., 2008, 2011). Full documentation of Version 3 calculator
is available online at https://sites.google.com/a/bgc.org/v3docs/. We calculated ages using the °Be
production rate calibration data set determined from the Rannoch Moor calibration site, central Scot-
tish Highlands, reported by Putnam et al. (2019). We chose this production rate calibration data
set because it is based on an independently '“C-dated set of glacial landforms that are located at a
similar latitude in the Northern Hemisphere to our Mongolian field sites. Our approach is similar
to that of Lifton, Beel, et al. (2014), who used the northeastern North American calibration data set
(Balco et al., 2009) to calculate a '’Be chronology for moraines in the nearby Kyrgyz Tien Shan. We
also present ages calculated using a modified version of the “Primary” global calibration data set of
Borchers et al. (2016), in which we substituted previous Scotland data with the more recent, radio-
carbon-constrained calibration data set of Putnam et al. (2019) (Table 3). We calculated ages with the
time-independent scaling method of Lal (1991) and Stone (2000) (“St”), a time-dependent scaling
version of Lal (1991) and Stone (2000) that incorporates a high-resolution geomagnetic model of
Lifton, Sato and Dunai (2014) and Lifton et al. (2016); “Lm”), and the time-dependent, nuclide-de-
pendent, scaling model of Lifton, Sato and Dunai (2014) (“LSDn”). We assumed a rock density of
2.7 g/lcm? and applied thickness corrections for each sample. Erosion rates were not incorporated into
the age calculations because the presence of glacial polish, striations, and rock varnish indicates that
surface erosion has been negligible for boulder surfaces selected for sampling. Wintertime satellite
imagery from the region indicates that boulder tops and moraine ridges remain exposed and free of
snow throughout the winter season likely due to low snow accumulation rates and wind. Therefore,
we did not apply any corrections for snow cover.

7. Results

Of 187 samples collected in the field, we processed 60 samples for '’Be analyses. Analytical results
and procedural blank data are given in Tables 1 and 2, respectively. We note that our use of two
laboratories and multiple low-level background beryllium carriers across multiple years produces
consistent '°Be/?Be ratios from multiple samples from the same landforms (see Table 1 for details).
Exposure ages are reported in Table 3 and shown on the map in Figure 7. Input data formatted
for exposure-age calculations using Version 3 of the online University of Washington cosmogenic
exposure-age calculators are included in Tables S1-S3 in Supporting Information S1. Hereafter, we
discuss ages calculated using the Putnam et al. (2019) calibration data set and the “St” scaling proto-
col of Lal (1991) and Stone (2000). We prefer ages calculated using this scaling model (Lal, 1991;
Stone, 2000) because it affords good agreement among sea-level high-latitude “reference” production
rates determined from independently dated calibration landforms at a variety of different latitudes
and altitudes (Putnam et al., 2019). However, we note that other production rates and scaling models
produce similar exposure ages and thus, our conclusions do not depend strongly on a choice of cali-
bration data set or the scaling model. Eventual development of a regional calibration data set from
Central Asia would aid in reducing scaling uncertainties and in refining the accuracy of '°Be chro-
nologies generated from this area.

STRAND ET AL.

12 of 26


https://sites.google.com/a/bgc.org/v3docs/

~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Paleoceanography and Paleoclimatology

10.1029/2022PA004423

Table 2

°Be Procedural Blank Data

CAMS Carrier  Carrier Average *Be
Blank  laboratory Corresponding added conc. 0Be/’Be + 16 N[!°Be] + Ic  current (pA)
no. no. Sample ID samples Be carrier name (€3] (ppm) (10-16) (103 atoms) (runs) AMS std
1 BE39002 BLK1- HOTON-14- LDEO carrier 5 0.1807 1,035 2.98 + 0.88 3.72 + 1.09 28.8 (2) 07KNSTD
2015Apr21 01, 02, 03,
04, 38, 40
2 BE40289 B15a- HOTON-14- LDEO carrier 5 0.2032 1,037 2.80 +2.56 3.94 +3.61 29.8 (2) 07KNSTD
2015Dec17 08, 09, 12
3 BE40290 B15b- HOTON-14-13  LDEO carrier 5 0.2019 1,037 4.24 +1.58 5.93 +2.21 22.7 (2) 07KNSTD
2015Dec17
4 BE40946  B19-2016Aprl5 HOTON-14- LDEO carrier 5 0.1817 1,038 2573 +£0.12 3242 +15.12 22.6 (2) 07KNSTD
10, 11, 15,
18, 20, 21
5 BE41790 B25-2016Sept2 TGV-15-18,19, LDEO carrier 5 0.1838 1,037 9.87 + 1.67 12.57 £2.13 25.8(2) 07KNSTD
20,21, 22,
23,24
6 BE41954  B27-20160ct21 HOTON-15-95 LDEO carrier 5 0.1852 1,037 11.12 + 1.86 14.38 +2.13 24.7 (2) 07KNSTD
7 BE43560 B50-2017Sept7 HOTON-14-  VWR-Chemicals  0.2063 981 54.47 + 1.87 73.97 £ 6.21 212 (2) 07KNSTD
42,43, 44, BDH carrier
46, 47, 58,
62, 63
8 BE43937 B57-2017Dec8 HOTON-15- UMaine Phena 1.0106 203 14.45 +3.41 19.99 + 4.68 19.8 (2) 07KNSTD
80, 81, 82 1A carrier
9 BE45350  B62-2018Sept9 HOTON-14-22, VWR-Chemicals  0.2079 994 50.01 +4.20 69.04 + 5.80 23.0 (2) 07KNSTD
23,24, 26, BDH carrier
28,29, 31
10 BE45415 B65-20180ct5 HOTON-14-  VWR-Chemicals  0.2046 996 55.59 +4.73 76.07 + 6.45 21.0 (2) 07KNSTD
33, 34, 35, BDH carrier
36, 37
11 BE45571  B68-20180ct25  TKLT-16-02, VWR-Chemicals  0.2051 997 63.27 +5.01 86.43 + 6.84 21.6 (2) 07KNSTD
05, 07, BDH carrier
TGV-15-08,
09, 10, 14,
17,26
12 BE45673  B70a-2018Nov2 ~ HOTON-15-  VWR-Chemicals  0.2044 998 5437 +491 74.117 + 6.69 18.0 (2) 07KNSTD
104, 105, BDH carrier
106, 109
Individual exposure ages are reported with 1o analytical uncertainties. Landform ages are reported as the arith-
metic mean along with both the standard error of the mean and an “external uncertainty,” stated in parentheses,
that includes the standard error propagated in quadrature with the production-rate uncertainty. For each land-
form population, we excluded exposure ages that were either morphostratigraphically discordant or samples that
deviated significantly from the moraine age population (i.e., as determined using Peirce's criterion or chi-square
statistics). A detailed report for each sample population can be found in Text S1 in Supporting Information S1,
and additional statistics for exposure age populations are provided in Table 4. All ages are reported to one digit
beyond the significant figure, following the convention set forth by Stuiver and Polach (1977).
Exposure ages from the Khoton Nuur moraines and inboard landforms exhibit generally good internal consist-
ency and most form approximately normal distributions (Figure 8). The outermost moraine of the Khoton Nuur
belt (Khoton IV) yields a mean landform age of 35,440 + 210 (980) years (n = 7, —4 outliers). Inboard moraine
ridges afford ages of 23,430 + 570 (850) years (Khoton III; n = 9, —2 outliers), 20,780 + 230 (610) years (Khoton
II; n =8, —1 outlier), and 19,520 + 160 (550) years (Khoton I; n = 3). A cluster of glacial erratic boulders located
on the Khoton Biluuts, just inboard of the Khoton I belt, date to 19,250 + 110 (530) years (n = 9, —1 outlier;
STRAND ET AL. 13 of 26
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Table 3

°Be Surface-Exposure Ages (in Thousands of Years Before AD 2015; +10)

Rannoch Moor, Scotland rate of Putnam

etal. (2019)

“Primary” global rate of Borchers et al. (2016):
Scotland sites replaced with Putnam et al. (2019)

Landform Sample ID Nuclide St age (ka) Lm age (ka) LSDn age (ka) St age (ka) Lm age (ka) LSDn age (ka)
Khoton Moraine IV HOTON-14-22 *  Be-10(qtz) 24.49 + 043 24.63 +0.44 23.63 +042 2393 +042 23.44 + 041 22.17 + 0.39
Khoton Moraine IV HOTON-14-23 *  Be-10 (qtz) 29.57 +£ 0.53  29.55 + 0.53 28.30 + 0.51 28.89 + 0.52 28.11 + 0.50 26.52 +0.48
Khoton Moraine IV HOTON-14-24  Be-10(qtz) 35.38 +0.69  35.33 + 0.69 3384 +0.66 3457 +0.67 33.60 + 0.65 31.59 £ 0.61
Khoton Moraine IV HOTON-14-26 *  Be-10(qtz) 78.64 + 1.94  78.10 + 1.92 74.62 +1.84  76.81 +1.89 74.18 + 1.82 69.73 + 1.71
Khoton Moraine IV HOTON-14-28  Be-10(qtz) 35.11 + 0.67 35.06 + 0.67 33.60 +£0.64  34.30 + 0.66 33.33 + 0.64 31.36 + 0.60
Khoton Moraine IV HOTON-14-29 *  Be-10(qtz) 94.95 + 1.38  93.98 + 1.36 89.87+1.30  92.73 + 1.35 89.29 + 1.29 84.06 + 1.22
Khoton Moraine IV HOTON-14-31 Be-10 (qtz) 35.84 £ 0.72  35.78 +0.72 34.26 + 0.69 35.01 +£0.71 34.03 + 0.69 32.00 + 0.65
Khoton Moraine IIT HOTON-14-33 *  Be-10(qtz) 37.42+0.89 37.33 +0.89 35.76 + 0.85 36.56 + 0.87 35.48 +£0.84 33.50 + 0.80
Khoton Moraine IIT HOTON-14-34  Be-10(qtz) 23.11 +0.31  23.29 +0.31 2238 +£0.30  22.58 +0.30 22.17 +0.30 21.03 +0.28
Khoton Moraine III HOTON-14-35  Be-10(qtz) 22.63 +0.43 22.82+043 21.95 + 041 22.11 +£ 042 21.73 £ 0.41 20.62 + 0.39
Khoton Moraine IIT HOTON-14-36  Be-10(qtz) 24.28 + 0.46 24.42 + 0.46 2347 +044 2372 +045 2323 +0.44 22.02 + 0.41
Khoton Moraine IIT HOTON-14-37  Be-10(qtz) 23.10 + 0.44 23.28 +0.44 2238 +£042 2257 +043 22.15 £0.42 21.03 + 0.40
Khoton Moraine III HOTON-15-104 Be-10(qtz) 21.47 +0.59 21.70+0.60  20.92 +0.58 20.97 + 0.58 20.67 + 0.57 19.65 + 0.54
Khoton Moraine IIT HOTON-15-105 Be-10 (qtz) 23.15+0.44 23.32+0.44 22.45 +0.42 22.61 +0.43 22.20 +0.42 21.09 + 0.40
Khoton Moraine IIT HOTON-15-106 * Be-10 (qtz) 36.89 +0.70  36.81 +0.70  35.31 + 0.67 36.04 + 0.68 34.98 + 0.66 33.07 + 0.62
Khoton Moraine III HOTON-15-109  Be-10(qtz) 26.32 + 0.50 2639 +0.50  25.35+0.48 25.71 + 0.49 25.11 +0.48 23.79 + 0.45
Khoton Moraine II HOTON-14-08  Be-10(qtz) 20.87 +0.56  21.12 + 0.56 20.48 + 0.55 20.39 + 0.54 20.11 + 0.54 19.22 + 0.51
Khoton Moraine II HOTON-14-09  Be-10(qtz) 21.08 +0.39 2133 +040  20.67 +0.39 20.59 + 0.38 20.30 + 0.38 19.40 + 0.36
Khoton Moraine II HOTON-14-10  Be-10(qtz) 20.73 +£0.42 21.00 + 0.42 20.35 + 0.41 20.26 + 0.41 19.99 + 0.40 19.11 + 0.38
Khoton Moraine II HOTON-14-11 Be-10 (qtz) 19.87 + 0.35 20.16 £ 0.35 19.54 + 0.34 19.41 + 0.34 19.19 + 0.33 18.34 + 0.32
Khoton Moraine II HOTON-14-12  Be-10(qtz) 21.12 + 045 21.37 +0.45 20.70 +£ 0.44  20.64 + 0.44 20.35 +0.43 19.43 £ 0.41
Khoton Moraine II HOTON-14-13  Be-10(qtz) 21.65+0.40 21.88 +0.41 21.18 + 0.39 21.15 +0.39 20.83 +0.39 19.89 + 0.37
Khoton Moraine II HOTON-14-15  Be-10(qtz) 20.12 + 0.40 20.41 +0.41 19.76 + 0.39 19.66 + 0.39 19.43 + 0.39 18.55 +0.37
Khoton Moraine II HOTON-14-18 * Be-10(qtz) 24.70 +£ 0.50  24.83 +0.51 23.98 + 0.49 24.13 + 0.49 23.62 +£0.48 22.50 + 0.46
Khoton Moraine I HOTON-15-58  Be-10(qtz) 19.20 +0.41  19.49 + 0.42 19.11 + 0.41 18.76 + 0.41 18.56 + 0.40 17.94 + 0.39
Khoton Moraine I HOTON-15-62  Be-10(qtz) 19.65 + 0.37 19.94 +0.38 19.54 + 0.37 19.20 + 0.37 18.98 + 0.36 18.34 £ 0.35
Khoton Moraine I HOTON-15-63  Be-10(qtz) 19.70 £ 0.37  19.99 + 0.38 19.59 + 0.37 19.25 + 0.37 19.03 + 0.36 18.39 £ 0.35
Khoton Biluuts HOTON-14-01 Be-10 (qtz) 19.72 +£ 0.32  20.01 +0.33 19.55 + 0.32 19.26 + 0.32 19.04 +0.31 18.35 + 0.30
Khoton Biluuts HOTON-14-02  Be-10(qtz) 19.08 + 0.31  19.38 +0.32 18.94 + 0.31 18.64 + 0.31 18.45 + 0.30 17.78 +£ 0.29
Khoton Biluuts HOTON-14-03 *  Be-10(qtz) 20.53 + 0.34  20.80 + 0.34 20.32 £ 0.33 20.06 + 0.33 19.80 + 0.32 19.07 £ 0.31
Khoton Biluuts HOTON-14-04  Be-10(qtz) 18.88 +0.36  19.19 +0.36 18.78 + 0.36 18.45 + 0.35 18.27 £ 0.35 17.63 +0.33
Khoton Biluuts HOTON-14-20  Be-10(qtz) 18.89 + 0.42 19.20 +0.42 18.70 + 0.41 18.45 + 0.41 18.28 + 0.40 17.55 £ 0.39
Khoton Biluuts HOTON-14-21 Be-10 (qtz) 19.43 +£0.50 19.73 +0.51 19.20 + 0.50 18.98 + 0.49 18.78 + 0.48 18.02 + 0.47
Khoton Biluuts HOTON-14-38  Be-10(qtz) 19.51 +£0.33  19.80 + 0.34 19.42 + 0.33 19.06 + 0.33 18.85 + 0.32 18.22 + 0.31
Khoton Biluuts HOTON-14-40  Be-10(qtz) 19.06 + 0.31  19.37 +0.32 19.00 + 0.31 18.63 + 0.31 18.44 + 0.30 17.83 +£0.29
Khoton Biluuts HOTON-15-95  Be-10(qtz) 1945+ 041 19.75 +0.42 19.29 + 0.41 19.00 + 0.40 18.80 + 0.40 18.11 £ 0.38
Khoton Erratics I HOTON-15-80  Be-10(qtz) 18.81 +£0.51  19.12 + 0.51 18.76 + 0.50 18.38 + 0.49 18.20 + 0.49 17.61 + 0.47
Khoton Erratics I HOTON-15-81 Be-10 (qtz) 18.66 + 0.35  18.98 + 0.36 18.62 + 0.35 18.24 +0.35 18.07 + 0.34 17.47 +0.33
Khoton Erratics I HOTON-15-82  Be-10(qtz) 18.94 + 0.31  19.25 +0.32 18.87 + 0.31 18.51 £ 0.30 18.33 + 0.30 17.71 £ 0.29
Khoton Erratics II HOTON-14-42  Be-10(qtz) 17.57 +£0.29  17.93 +0.29 17.57 + 0.29 17.17 + 0.28 17.06 + 0.28 16.49 + 0.27
Khoton Erratics II HOTON-14-43  Be-10(qtz) 18.27 + 0.33  18.61 +0.34 18.23 + 0.33 17.85 £ 0.33 17.71 + 0.32 17.11 + 0.31
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Continued
Rannoch Moor, Scotland rate of Putnam “Primary” global rate of Borchers et al. (2016):
etal. (2019) Scotland sites replaced with Putnam et al. (2019)
Landform Sample ID Nuclide St age (ka) Lm age (ka)  LSDn age (ka) St age (ka) Lm age (ka) LSDn age (ka)
Khoton Erratics II HOTON-14-44 Be-10 (qtz) 17.61 + 0.43 17.96 + 0.44 17.61 + 0.43 17.21 + 0.42 17.10 + 0.42 16.52 + 0.40
Khoton Erratics II HOTON-14-46  Be-10(qtz) 18.67 £ 0.35  18.99 + 0.36 18.62 + 0.35 18.24 +£0.35 18.08 + 0.34 17.47 £0.33
Khoton Erratics II HOTON-14-47  Be-10(qtz) 18.20 +0.30  18.54 + 0.31 18.17 + 0.30 17.78 + 0.29 17.65 + 0.29 17.06 + 0.28
Tsagaan-Sol Moraine I TGV-15-18 * Be-10 (qtz) 19.47 +£0.37  19.78 + 0.37 19.32 +0.36 19.02 + 0.36 18.83 +0.35 18.13 £ 0.34
Tsagaan-Sol Moraine I TGV-15-19 Be-10 (qtz) 17.49 +£ 033  17.85+0.34 17.46 + 0.33 17.09 + 0.32 16.99 + 0.32 16.38 + 0.31
Tsagaan-Sol Moraine I TGV-15-20 * Be-10 (qtz) 32.41 +£0.71 3240+ 0.71 31.50 +£0.69  31.67 +0.70 30.75 + 0.68 29.48 + 0.65
Tsagaan-Sol Moraine I TGV-15-21 * Be-10 (qtz) 14.44 + 033  14.87 +0.34 14.57 + 0.33 14.11 + 0.32 14.15 £ 0.32 13.69 + 0.31
Tsagaan-Sol Moraine I TGV-15-22 * Be-10 (qtz) 27.82 +0.48 27.87+048  27.14+047  27.18 +0.47 26.50 + 0.46 25.44 + 0.44
Tsagaan-Sol Moraine I TGV-15-23 Be-10 (qtz) 17.87 +0.38  18.23 +0.38 17.83 £ 0.37 17.46 + 0.37 17.35 £ 0.36 16.73 £ 0.35
Tsagaan-Sol Moraine I TGV-15-24 * Be-10 (qtz) 43.72 +£0.66 4340+ 0.65 42.15+0.63 4271 +0.64  41.26 +0.62 39.57 + 0.59
Tsagaan-Sol Erratics TGV-15-08 Be-10 (qtz) 16.31 +£ 0.35  16.70 + 0.36 16.36 + 0.36 1594 +£0.35 15.89 + 0.35 1535 £0.33
Tsagaan-Sol Erratics TGV-15-09 Be-10 (qtz) 16.51 +£ 0.31  16.89 +0.32 16.54 + 0.31 16.13 + 0.30 16.08 + 0.30 15.52 +0.29
Tsagaan-Sol Erratics TGV-15-10 Be-10 (qtz) 17.22+0.32 1759 +0.33 17.22 +0.32 16.82 + 0.32 16.74 + 0.31 16.17 + 0.30
Tsagaan-Sol Erratics TGV-15-14 Be-10 (qtz) 16.67 + 0.27  17.05 + 0.28 16.69 + 0.27 16.29 + 0.27 16.23 + 0.26 15.66 + 0.26
Tsagaan-Sol Erratics TGV-15-17 Be-10 (qtz) 16.63 £ 0.27  17.02 + 0.28 16.65 + 0.27 16.25 + 0.26 16.20 + 0.26 15.63 + 0.25
Tsagaan-Sol Erratics TGV-15-26 Be-10 (qtz) 18.19 +0.34  18.53 +0.35 18.12 + 0.34 17.77 + 0.33 17.64 +0.33 17.01 £ 0.32
Takhilt Valley Moraine I TKLT-16-02 Be-10 (qtz) 16.28 +£ 0.32  16.71 +0.32 15.90 + 0.31 1591 £ 0.31 15.90 + 0.31 14.93 + 0.29
Takhilt Valley Moraine I TKLT-16-05 Be-10 (qtz) 15.57 £ 0.32  16.02 +0.33 15.21 £ 0.32 15.22 +0.32 15.25 +0.32 14.29 + 0.30
Takhilt Valley Moraine I TKLT-16-07 Be-10 (qtz) 16.27 + 0.31  16.70 + 0.31 15.82 +0.30 15.90 + 0.30 15.90 + 0.30 14.86 + 0.28

Note. Samples marked by a single asterisk (¥) next to the sample ID are considered outliers and are not included in statistical analyses. Bold ages are those discussed

in the text.

Figure 9). A cluster of erratic boulders on thin drift near the eastern base of Biluut 1 afford an average age of
18,810 + 80 (510) years (n = 3), whereas a cluster of erratic boulders located ~15 km up the valley from the
Khoton Biluuts afford a mean age of 18,060 + 210 (530) years (n = 5). Dates from a 4-km-long train of erratic
boulders resting on the ice-molded bedrock ~5-10 km farther up valley in the Tsagaan-Sol Valley range from
18,190 + 340 years to 16,310 + 350 years. The outermost age of this boulder train is 18,190 + 340 years, and it
lies outboard of a moraine ridge containing a cluster of angular boulders (Figure 7). Ages from this moraine ridge
yield a wide age range likely due to inherited inventories of '°Be that were not effectively removed during glacial
transport. Two morphostratigraphically consistent ages from this morainal boulder cluster yield an average age of
17,680 + 190 (510) years (Tsagaan-Sol I; n = 7, —5 outliers). Erratic boulders associated with the 4-km boulder
train located inboard of the moraine ridge range between 16,200 + 400 and 17,200 + 300 years old (Figure 7) and
form an approximately normal distribution (Figure 8), indicating that the ages are statistically indistinguishable
from each other. Finally, the innermost landform of the sequence, located ~5 km outboard of the late Holocene
moraines of Takhilt Pass, affords a mean age of 16,040 + 230 (490) years (Takhilt I; n = 3).

8. Discussion

Our glacial-geomorphic mapping and '°Be surface-exposure dating show that the Khoton glacier achieved maxi-
mal phases at 35,440 + 210 (980) years ago, 23,430 + 570 (850) years ago, 20,780 + 230 (610) years ago, and
19,520 + 160 (550) years ago. Ages on erratic boulders indicate that glacier recession from Khoton Nuur was
underway shortly after 18,810 + 80 (510) years ago. By 17,680 + 190 (510) years ago, the margin of the Khoton
glacier had retreated to 50% of its maximal extent (Figure 10). Retreat to within 5 km of the pre-industrial ice
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Figure 7. Glacial geomorphic maps of dated landforms with exposure ages (ages are in kyrs) and sample locations plotted. Bold-type exposure ages are from moraines,
regular-type exposure ages are from glacial erratics, whereas italic-type exposure ages are those identified as outliers. Geomorphological symbols and map panel
boundaries are equivalent to Figures 2 and 3.

margin was completed by 16,040 + 230 (490) years ago, corresponding to an overall length reduction of 90% by
this time (Figure 11).

We interpret length changes of the former Khoton glacier as reflecting glacier response to the past climate
change. Although in some circumstances glacier length changes can exhibit a complex (i.e., nonlinear) rela-
tionship to corresponding ELA changes, glaciers with gently sloping, constant bed profiles (Figure 10) tend to
exhibit a linear relationship between length and ELA (Doughty et al., 2017; Klok & Oerlemans, 2003, 2004;
Mackintosh et al., 2017; Oerlemans, 2001, 2012; Putnam et al., 2012; Roe et al., 2017). Our chronology for the
Khoton glacier indicates that the climate of western Mongolia had achieved maximal cooling and ELA lowering
as early as ~35,000 years ago and again during subsequent glacier advances that culminated at ~23,000 years
ago, ~20,800 years ago, and at ~19,500 years ago. Deglaciation then began shortly after ~18,800 years ago,
heralding the termination of ice-age conditions in this part of Central Asia. Glacier withdrawal to near-present-
day lengths by ~16,000 years ago indicates that the climate had warmed to near-interglacial temperatures by that
time, signaling the onset of a near-interglacial climate mode within three millennia after the start of the local last
glacial termination.

The younger three Khoton glacier maxima, 23,430 + 570 (850) years ago, 20,780 + 230 (610) years ago, and
19,520 + 160 (550) years ago, coincided with low local summertime insolation intensities and atmospheric CO,
concentrations (Figure 12). Coeval timing of maximal glacier extents, low summer insolation intensity, and low
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Table 4
Summary Statistics for '°Be Landform Ages
+SEM +“External”

n Mean uncertainty uncertainty +lo (standard Peak age Median Reduced
Data set n out age (yrs) (yrs) (yrs) deviation) (yrs) (yrs) age (yrs) Ve 7
Khoton Moraine IV (all) 7 - 47,700 10,360 10,400 27,400 35,400 35400 6417.08 1069.51
Khoton Moraine IV (outliers excluded) 3 4 35,440 210 980 370 35,410 35,380 0.56 0.28
Khoton Moraine III (all) 9 - 26,500 2100 2200 6,200 23,100 23,100 790.35 98.79
Khoton Moraine III (outliers excluded) 7 2 23430 570 850 1,520 23,060 23,110 53.02 8.84
Khoton Moraine II (all) 8 - 21,270 530 780 1,450 21,000 20,970 74.42 10.63
Khoton Moraine II (outlier excluded) 7 1 20,780 230 610 610 21,000 20,870 15.50 2.58
Khoton Moraine I 3 - 19,520 160 550 280 19,580 19,650 0.98 0.49
Khoton Biluuts (all) 9 - 19,390 170 550 520 19,170 19,430 18.36 2.29
Khoton Biluuts (outlier excluded) 8 1 19,250 110 530 310 19,170 19,250 5.55 0.79
Khoton Erratics I 3 - 18,810 80 510 140 18,830 18,810 0.36 0.18
Khoton Erratics IT 5 - 18,060 210 530 470 18,220 18,200 7.57 1.89
Tsagaan-Sol Moraine I (all) 7 - 24,700 3,970 4,030 10,500 17,600 19,500 3,01547  502.58
Tsagaan-Sol Moraine I (outliers excluded) 2 5 17,680 190 510 270 17,630 17,680 0.60 0.60
Takhilt Valley Moraine I 3 - 16,040 230 490 410 16,240 16,270 3.23 1.62

atmospheric CO, also corresponds with the lowest value of global sea level, which reflects when the Northern
Hemisphere ice sheets maintained their maximum volumes and areal extents of the LGM (Figure 12). Taken
in isolation, these particular moraine belts of the Khoton sequence were constructed coevally with decreased
radiative forcing during the LGM (e.g., Marcott et al., 2019; Osman et al., 2021; Shakun et al., 2015; Tierney
et al., 2020). This finding is in broad agreement with previous studies from Central Asia, demonstrating expan-
sive mountain glaciers during the global LGM (Lehmkuhl et al., 2004, 2007, 2011, 2016; Batbaatar et al., 2018;
Blomdin et al., 2016; Dong et al., 2020; Gribenski et al., 2016, 2018; Klinge et al., 2021; Yang et al., 2017).
Additionally, deglaciation of the Khoton glacier after ~18,800 years ago was underway when radiative forcing at
northern latitudes generally began to increase (Figure 12).

Although the timing of moraine construction in the Khoton Nuur valley is generally consistent with the
hypothesis that radiative forcing was important for driving ice-age climate change, two problems arise when
considering (a) the timing and rate of deglaciation of the Khoton glacier and (b) maximal ice extent during
MIS 3. First, the Khoton Nuur chronology shows that the recession of the Khoton glacier, driven by summer
melt, outpaced the rise of atmospheric CO, as well as any significant demise of the large northern sheets (as
recorded by the rise of global sea level) by several thousand years (Figure 12). By 16,040 + 230 (490) years
ago when the Khoton glacier had retreated 90% of its full-glacial length to within 5 km of its pre-industrial
margin at Takhilt Pass, global sea level (here taken as a proxy for the volume of Northern Hemisphere ice
sheets) and atmospheric CO, concentrations had risen only slightly above their respective LGM minimum
values (Figure 12). Likewise, the Khoton Nuur glacier system had receded to an interglacial position several
millennia before the combined radiative effects of atmospheric CO, and ice-sheet albedo had achieved inter-
glacial levels (Figure 13).

This signature for the termination is not isolated to western Mongolia. In the Kyrgyz Tian Shan, ~1,000 km to
the southwest of Khoton Nuur, the Inylchek Glacier had receded to near its pre-industrial Late-Holocene position
by 16,170 + 470 years ago (n = 4, —2 outliers) as well (Lifton, Beel, et al., 2014). Farther afield in the Euro-
pean Alps, major ice-surface lowering was underway by no later than 17,700 + 600 years ago (Wirsig, Zasadni,
Christl, et al., 2016; Wirsig, Zasadni, Ivy-Ochs, et al., 2016) and retreat well into the mountain valleys had
occurred by ~16,000-17,000 years ago (Amman & Lotter, 1989; Ivy-Ochs, 2015). Extensive alpine ice recession
corresponded with enhanced meltwater delivery into the Danube River between 18,000 and 16,000 years ago
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Figure 8. Normal kernel density functions (i.e., “camelplots”) for landforms in the field area. Center blue line is arithmetic
mean. Dark blue-shaded area represents the standard error of the mean (SEM) and the light blue-shaded area represents the
“external uncertainty.” The thin black curves are the Gaussian representation of each sample. Dotted black lines represent
outliers. The thick black curve is the total probability distribution of all plotted samples, excluding outliers. Associated

statistics for each population are presented in Table 4.

STRAND ET AL.

18 of 26



~1
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Paleoceanography and Paleoclimatology 10.1029/2022PA004423

Biluut 3 profile
A A masl
2275 19.4 £ 0.5 HoTON-14-21 2275
2,250 18.9 + 0.4 HoToN-14-20 2,250
19.7 + 0.3 HoTton-14-01 2,005
19.1 £ 0.3 HoToN-14-02 r
20.5 + 0.3 Hoton-14-03
18.9 £ 0.4 HoToN-14-04 (2175
19.5 £ 0.3 HoTON-14-38 | 2,150
19.1 £ 0.3 HOTON-14-40

2,225;
2,200i r 2,200
2,175

2,1507

2,125 1 -2,125

2,100

2,100
0 500 1,000 1,500 2,000 2,500 3,000 3,500

Distance (m)

Figure 9. Profile showing the form of Biluut 3 with exposure ages plotted (ages are in kyrs). Location of profile transect is
plotted (A to A’) on map in Figures 3 and 7.

(Martinez-Lamas et al., 2020). Therefore, the chronology of ice recession documented at Khoton Nuur was a
characteristic of a widespread signal registered among temperature-sensitive mountain-glacier systems elsewhere
in Central Asia and in Europe. The observation that mountain glaciers in these regions receded to intergla-
cial volumes several millennia before the disappearance of the Laurentide Ice Sheet, for example, indicates that
summer warming in Eurasia overpowered any potential cooling that may have been afforded by albedo feedbacks
imposed by the still-large Northern Hemisphere ice sheets between ~19,000 years ago and ~16,000 years ago
(Figure 13).

Second, our chronology indicates that the Khoton Nuur glacier achieved a maximum extent at least as early
as 35,000 years ago, nearly 10,000 years before the maximum in global ice volume, well before the lowest
atmospheric CO, concentrations, and during a period of relatively high local summer insolation intensity
(Figure 12). The Khoton Nuur chronology dovetails with other moraine chronologies that indicate extensive
pre-LGM advances of Mongolian and Altai mountain glaciers (Blomdin et al., 2018; Dong et al., 2020; Gillespie
et al., 2008; Gribenski et al., 2018; Klinge et al., 2021; Krivonogov et al., 2012; Lehmkuhl et al., 2011; Proko-
penko et al., 2009; Rother et al., 2014). For example, a '°Be chronology from the Otgon Tenger glacier cap in
the Khangai Mountains of central Mongolia shows that moraine construction took place between and ~46,000
and 38,000 years ago (Rother et al., 2014), and a terminal moraine in the Bumbat Valley in the Hangai Ranges
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Figure 10. Khoton valley profile illustrating ice-surface profiles, with chronology (ages in kyrs), of the former Khoton
glacier. Surface profiles are estimated based on lateral moraine profiles where available. Profiles based on lateral moraines
are plotted in magenta, and profiles estimated for corresponding erratic boulders are plotted in black. A present-day glacier
margin at the head of Takhilt Valley is illustrated in blue. Extrapolated profiles are shown as dotted lines. Vertical scale is
exaggerated 50X.
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Figure 11. Time-distance diagram showing the retreat history of the former

glaciation. If true however, then glacier fluctuations should have been out
of phase between midlatitudes of the two polar hemispheres. Our chro-

Khoton glacier. Exposure ages and uncertainties are plotted as triangles and nology shows that the Khoton glacier, located near the center of the large
horizontal bars, respectively. Symbols are described in legend, inset. Exposure  Asian continent, achieved maximal extents coevally with mountain glaciers
ages marked as outliers are shown in gray coloring. Faded symbols represent in the Southern Alps of New Zealand (~43°-44°S), situated within the

moraine ages adjusted to the limits of uncertainty bounds attending the
production-rate calibration data set. Gray line indicates a likely retreat history

as constrained by exposure ages.

southwest Pacific Ocean (Doughty et al., 2015; Kelley et al., 2014; Putnam,
Schaefer, Denton, Barrell, Birkel, et al., 2013; Rother et al., 2015; Schaefer
et al., 2015; Strand et al., 2019; Figure 14). Likewise, extensive glacier
recession took place nearly simultaneously between ~18,000 years ago
and ~16,000 years ago in the Altai (this study) and in the Southern Alps
(Putnam, Schaefer, Denton, Barrell, Andersen, et al., 2013) despite being in opposite hemispheres and situated
in different climatic settings, further highlighting Mercer's Paradox.

The most rapid phase of deglaciation in each of these midlatitude sites occurred during the early millennia
of Heinrich Stadial 1 (~17,800-14,700 years ago). During this time, enhanced meltwater and iceberg fluxes
stratified the North Atlantic Ocean (Barker & Diz, 2014; Barker et al., 2009, 2015; Toucanne et al., 2015),
leading to extensive winter sea-ice growth and depressed mean-annual temperatures registered in the circum-
North Atlantic region (Bard et al., 2000; McManus et al., 1994; Rasmussen et al., 2016). On the other hand,
observations of extensive melt and glacier recession in the European Alps and Mongolian Altai indicate inten-
sified summertime warming during this time. Taken together, observations of cool, stratified surface-ocean
conditions in the North Atlantic, cold mean-annual temperatures, and accelerated ice terrestrial mountain-gla-
cier recession are most easily reconciled by the consideration that intense seasonality, with warm summers
and hypercold winters, characterized the climate of the North Atlantic during Heinrich Stadial 1 (Denton
et al., 2005, 2010, 2021).

In sum, the mountain glacier reconstruction from the Mongolian Altai presented here reveals the emergence of
Mercer's Paradox in the Asian/Australasian sector of the planet, calling into question the simple application of
northern-latitude summer orbital forcing as a driver of global ice-age climate (e.g., Milankovitch, 1941) as noted
by Mercer (1984, 1976). These considerations suggest that a different linkage between orbital forcing and global
ice-age climate change is required, one in which the resulting global climate drives glaciers simultaneously in
both polar hemispheres. While various combinations of rising atmospheric CO, and insolation-driven ice-sheet
feedbacks have been invoked to explain global warming and near-global glacier recession during the last glacial
termination (Broecker, 2014; Osman et al., 2021; Shakun et al., 2012, 2015; Tierney et al., 2020), these radiative
forcing factors fail to explain the rapid, nonlinear recession of midlatitude mountain glacier systems in Central
Asia and the Southern Alps from glacial to interglacial modes that took place during Heinrich Stadial 1. We
suggest that an additional heating agent is required to explain how ice loss outpaced typical radiative forcing
agents at least in the midlatitude locations considered here. In other words, any solution to the ice-age puzzle will
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Figure 12. Time-distance diagram showing the retreat history of the former Khoton glacier plotted against global climate
drivers discussed in the text. (a) Khoton glacier time-distance diagram from Figure 11. (b) Local summertime insolation
intensity calculated for June 21st at 49°N. (c) Global sea level, an analog for global ice volume (data compiled in Lambeck

et al., 2014). (d) Atmospheric CO, concentration as measured in Antarctic ice cores (Bauska et al., 2021; Buizert et al., 2015;
Marcott et al., 2014).

need to account for coeval glacial maxima, and rapid, simultaneous deglaciation in interior Asia and the middle
latitudes of the Southern Hemisphere. Further development of detailed glacier chronologies documenting the
Last Glaciation and last glacial termination in both polar hemispheres, in continental and oceanic climate settings,
will help to elucidate a solution to the global ice-age problem.

9. Conclusions

Our '“Be surface-exposure ages from glacial landforms in the Mongolian Altai demonstrate that Mercer's
Paradox applies to the Asian/Australasian sector of the globe in the same fashion as Mercer (1984) estab-
lished for North and South America. Although Khoton glacier maxima coincided with the global LGM
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these common radiative forcing agents had achieved interglacial values.
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(~26.5-19.0 ka), a direct correlation with proposed global climate
drivers, such as summer insolation intensity at northern latitudes, does
not adequately account for the full glacier chronology presented here.
Furthermore, the record of Khoton glacier retreat shows that the rise of
summer temperatures in the Mongolian Altai to interglacial values led
to the demise of the large northern sheets as well as the rise of atmos-
pheric CO, by several thousand years. This leads us to ask: If full-glacial
climate in Mongolia reverted to a near-interglacial climate condition with
relatively small contributions from rising atmospheric CO, and a slight
reduction in Northern Hemisphere ice-sheet size, was any combination
of insolation intensity, ice sheet size, and low atmospheric CO, sufficient
to drive Northern Hemisphere glaciation in the first place? Could another
factor, one sufficiently strong to overpower the more gradual effects of
these forcing factors, be necessary for explaining the nonlinear pace of
mountain-glacier recession during the termination? Further development
of precise mountain glacier records from auxiliary locations around the
globe will help to fully resolve these questions.
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Figure 14. Khoton Nuur glacier length (49°N) compared with glacier-inferred temperatures developed from Southern Alps
glacier chronologies (Denton et al., 2021; Doughty et al., 2015; Kelley et al., 2014; Putnam, Schaefer, Denton, Barrell,
Andersen, et al., 2013; Putnam, Schaefer, Denton, Barrell, Birkel, et al., 2013; Schaefer et al., 2015; Strand et al., 2019).
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