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Human-induced changes in the distribution of rainfall
Aaron E. Putnam1,2* and Wallace S. Broecker2

A likely consequence of global warming will be the redistribution of Earth’s rain belts, affecting water availability
for many of Earth’s inhabitants. We consider three ways in which planetary warming might influence the global
distribution of precipitation. The first possibility is that rainfall in the tropics will increase and that the subtropics
and mid-latitudes will become more arid. A second possibility is that Earth’s thermal equator, around which the
planet’s rain belts and dry zones are organized, will migrate northward. This northward shift will be a consequence
of the Northern Hemisphere, with its large continental area, warming faster than the Southern Hemisphere, with
its large oceanic area. A third possibility is that both of these scenarios will play out simultaneously. We review
paleoclimate evidence suggesting that (i) the middle latitudes were wetter during the last glacial maximum, (ii) a
northward shift of the thermal equator attended the abrupt Bølling-Allerød climatic transition ~14.6 thousand
years ago, and (iii) a southward shift occurred during the more recent Little Ice Age. We also inspect trends in
seasonal surface heating between the hemispheres over the past several decades. From these clues, we predict
that there will be a seasonally dependent response in rainfall patterns to global warming. During boreal summer,
in which the rate of recent warming has been relatively uniform between the hemispheres, wet areas will get
wetter and dry regions will become drier. During boreal winter, rain belts and drylands will expand northward
in response to differential heating between the hemispheres.
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INTRODUCTION

High on the list of likely consequences of human-induced climate
change is the redistribution of rainfall. Although water for domestic
use can be produced affordably by desalination, that required for agri-
culture cannot. Rather, it must be supplied by natural sources, such as
direct rainfall and irrigation from surface and underground reservoirs.
Despite efforts to improve management of freshwater resources, in-
creases in human population, meat eating, and industrial water usage
are already creating shortages. The impact of anthropogenic changeswill
further complicate this already serious situation. Here, we discuss one of
these complications, namely, the redistribution of water resulting from a
warming planet.

On the basis of simulations carried out in atmosphere-oceanmodels,
two hypothetical global changes in the pattern of rainfall stand out. One
hypothesis suggests that, as the world warms, rainfall will become in-
creasingly focused on the tropics (Fig. 1) (1). Although, by this hypoth-
esis, net global precipitation will increase, the precipitation increase will
be dominantly registered in the tropical rain band, and the subtropics
and middle latitudes will become drier. The other hypothesis is that
the world’s tropical andmid-latitude rain belts are tied to the latitude of
the thermal equator. Hence, as CO2 has and likely will continue to heat
theNorthernHemisphere faster than the SouthernHemisphere (Fig. 2),
the world’s rain belts [that is, the intertropical convergence zone (ITCZ)
andmid-latitude storm tracks]may shift to thenorth (2–4). This happens
annually (see Fig. 3). The thermal equator shifts to the north during
boreal summer and to the south during boreal winter. The record for
the past 30,000 years (30 ky) kept in the shorelines of closed-basin lakes
supports both of these model-based predictions. During peak glacial
time [the last glacial maximum (LGM); 26 to 18 ky ago (5)], the extra-
tropics were wetter. During the period of deglaciation (18 to 11 ky ago),
the world’s rainfall belts jumped back and forth following rapid hemi-
spheric switches in the extent of polar sea-ice cover. Here, we make a
case that the paleoclimate record can be used as a guide for how the
planet’s hydrological system might evolve as global temperatures rise
in response to the injection of fossil CO2 into the atmosphere. Just as with
the case of the last glacial termination, we envision a hybrid response that
involves not only tropical focusing of rainfall with drying of the extratrop-
ics (specifically the subtropics and middle latitudes) but also a concomi-
tant shift of the tropical rain belts and mid-latitude storm tracks in
lockstep with the northwardmarch of the thermal equator—at least dur-
ing the global warming transient.
THE IMPACT OF GLOBAL TEMPERATURE
Conditions at the peak of the last ice age afford a means by which the
Held and Soden (1) “wet-get-wetter, dry-get-drier” hypothesis can be
tested using the paleoclimate record. For example, if a warmer world is
expected to produce increased tropical and decreased subtropical/
mid-latitude rainfall, then the converse situation that a colder world
would support drier tropics and wetter extratropics should hold. The
most convincing evidence that global cooling reduces the extent to
which rainfall is focused on the tropics comes from closed-basin lakes
located in the 35° to 40° latitudinal belts (Fig. 4). Because these lakes
have no outlets, the water supplied by river inflow is lost by evaporation
rather than outflow. This being the case, the greater the input of river
water, the larger the lakes become. Hence, elevated shorelines record
past times of greater precipitation. As shown in Fig. 3, closed-basin lakes
in western North America’s drylands (6–8), in the Middle East (9), and
in South America’s Patagonian drylands (10) were all larger than to-
day during the time when mountain glaciers stood at their maximum
extent (11–13). The ages of the corresponding glacial maximum shore-
lines have been established by a combination of radiocarbon and radio-
thorium dating.

Because these lakes were 3 to 10 times larger than now during peak
glacial time, it is clear that the glacial expansion cannot be explained by
enhanced precipitation alone. Rather, it must be coupled with a large
amplification. It turns out that the percentage change in lake areas is
much larger than can be accounted for by precipitation. The reason
for this relates to what hydrologists refer to as the Budyko effect (14):
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Fig. 1. Dependence of tropical focusing of rainfall on Earth temperature as determined using an ensemble of general circulation models. Map depicts regions
that will get wetter (green and blue shades) and drier (brown shades) as the planet warms. The figure is reproduced with permissions from Figure SPM.7 in the Inter-
governmental Panel on Climate Change AR5 Report [Summary for Policy Makers, pg. 12 (95)] and is based on the approach of Held and Soden (1). Data are from the
ensemble average of the Coupled Model Intercomparison Project Phase 5 (CMIP5)/Intergovernmental Panel on Climate Change (IPCC) RCP 8.5 modeling results (95).
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Fig. 2. Globally distributed temperature trends for the period CE 1951 to CE 2015. Left: Global map of temperature trends calculated for the period CE 1951 to CE
2015. Right: Zonally averaged temperature trends. The northern middle and high latitudes have warmed roughly twice as much as corresponding southern latitudes
over the past half-century or so. Plots are based on the GISTEMP (Goddard Institute for Space Studies Surface Temperature Analysis) Reanalysis data set (96, 97).
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The greater the precipitation, the greater the fraction of water that runs
off. For each 10% increase in rainfall, there is, on average, a 30% increase
in runoff. Therefore, for example, a twofold increase in rainfall could
explain a sixfold increase in lake area. Koster et al. (15) picked up on this
and compiled precipitation and runoff data for 2000 drainage basins.
While confirming that, on the average, there is a threefold amplification,
they showed that the situation for individual drainage basins varies
widely around this average. Themagnitude of the amplification depends
on topography, snowfall, plant cover, seasonality, etc. This amplification
has widespread future importance because it applies to man-made res-
ervoirs used to store water for agricultural use (16).

Other factors also influence the area of closed-basin lakes.One is that
the rate of evaporation from a lake depends on temperature. Another is
that part of thewater vapor produced by lake evaporation rains back out
Putnam and Broecker, Sci. Adv. 2017;3 : e1600871 31 May 2017
before escaping the bounds of the lake’s drainage basin (17). Further-
more, although closed to overflow, water may leak into fracture zones
beneath the lake. However, despite these complications, the message is
clear that in the colder ice-ageworld, precipitation in the 30° to 40°mid-
latitude dryland band was larger than today. This suggests that, as fossil
fuel CO2 warms the world, these areas will become drier (1, 8, 11).
THE IMPACT OF DISPLACEMENTS OF THE THERMAL EQUATOR
Responding to abrupt changes in the extent of winter sea-ice cover in the
northern Atlantic during the period of deglaciation, the planet’s thermal
equator jumped north and south (18, 19). During times of enhanced
northern sea-ice cover, it moved to the south. During times of reduced
sea-ice cover, the thermal equator moved to the north. The largest of
JJA precipitation (m)

DJF precipitation (m)

Seasonal rainbelt shift

Seasonal precipitation anomaly (JJA minus DJF)

JJA DJF

0°

90°N
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Fig. 3. Seasonal shift of Earth’s rain belts. (A) Map illustrates the global seasonal precipitation anomaly [June-July-August (JJA) precipitation minus December-January-
February (DJF) precipitation]. Red shades depict the position of the rain belts in the boreal summer, and blue shades indicate the position in the austral summer. (B) Plot of
zonally averaged precipitation for JJA (red curve) and DJF (blue curve). Note the southward shift of the precipitation maximum that occurs between boreal summer and winter.
Plots are based on data averaged over the period CE 1979 to CE 2015 from NASA Modern Era Retrospective Analysis for Research and Applications (MERRA) (98).
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Fig. 4. Composite showing LGM (blue) and Late Holocene (red) extents of Lakes Lahontan, Lake Bonneville, the Dead Sea, and Lago Cari-Laufquen. These four
closed-basin lakes (two in the Great Basin of the western United States, one in Israel-Jordan, and one in Argentina’s Patagonian drylands) were much larger during the
LGM compared with the late Holocene (red) (46). This difference reflects generally wetter conditions in the subtropics and middle latitudes during planetary cold
episodes, partially at the expense of the drier tropics (1).
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these northward jumps occurred 14.6 ky ago. We will focus on this
event not only because we have a more complete record of its global
impacts but also because the ongoing global warming will produce a
shift of the thermal equator (Fig. 5), and possibly Earth’s hydroclimate,
in the same direction. One reason is that the Northern Hemisphere has
twice as much land as the Southern Hemisphere and thus can heat up
faster. Another reason is that the deep mixing in the Southern Ocean
creates a “thermostat,” holding back warming (20). Thus, the Northern
Hemisphere can heat up more rapidly than the Southern Hemisphere,
thereby steepening the interhemispheric thermal gradient and forcing a
northward shift of the thermal equator.

The record preserved in ice tells us that Greenland’s temperature
underwent an abrupt 10°C mean annual warming 14.6 ky ago (21),
marking the onset of the Bølling-Allerød interval. Most of this warming
is thought to have occurred during winters (22, 23). The pre–14.6-ky
cold, dubbed the “Mystery Interval” (24) or “Heinrich Stadial 1” (25),
was the result of the presence of vastwinter sea-ice cover over the density-
stratified northern Atlantic (22, 26–28). Consequently, no ocean heat
could reach the surface, and much of the incoming sunlight was re-
flected back to space. This being the case, winters in western Europe
and Scandinavia would have been much like those in Siberia today
(22, 29). During the Mystery Interval, the combination of more sea
ice in the north and less in the south pushed the thermal equator to
the south. Then, 14.6 ky ago, the situation abruptly switched. A re-
juvenation of deepwater formation in the northern Atlantic (27)
eliminated winter sea ice there. Although less certain, the extent of
sea-ice cover in the Southern Ocean appears to have been antiphased
with that in the northern Atlantic. The record kept by diatom accu-
mulation in Southern Ocean sediments suggests that around 14.6 ky
ago, the austral westerlies shifted equatorward, upwelling subsided,
and sea-ice cover around the Antarctic continent presumably
expanded (30, 31). This switch pushed the thermal equator back to
Putnam and Broecker, Sci. Adv. 2017;3 : e1600871 31 May 2017
the north (19, 32, 33). Because the latitude of Earth’s rain belts and
dry zones are, at least in part, tied to the position of the thermal equa-
tor, this climatic change caused widespread changes in precipitation.

The expression of this hydrologic reorganization is featured in re-
cords obtained from continental margin sediments, stalagmite calcite,
closed-basin lake shorelines, leaf waxes, and ice cores, to name a few.
Here, we review a selection of pertinent paleoclimate records from trop-
ical and extratropical regions that document the global hydrological re-
sponse to the northward jump of the thermal equator that took place
14.6 ky ago.

Amazonia
Records of continental runoff and stalagmites from areas surrounding
theAmazon afford insight into the behavior of the tropical rain belt over
South America during the abrupt change 14.6 ky ago. Continental mar-
gin sediments consist primarily of soil detritus supplied by rivers and
CaCO3 produced by marine plankton. The detritus has a dark color,
and theCaCO3 has a light color. Scans of sediment color provide a qual-
itative measure of the ratio of relative contributions of these two com-
ponents. The same information can be obtained by measuring, for
example, the ratios of calcium to iron or calcium to titanium in the sed-
iment. Because the rain rate ofmarine calcite varies far less than the rate
of delivery of soil debris, color changes primarily reflect the changes in
river runoff and, hence, in precipitation in the contributing river’s
drainage basin.

Isotopic records fromwell-dated cave carbonates (for example, stalag-
mites) complement rainfall reconstructions from continental margin
sediments and afford key insights into the behavior of Earth’s hydro-
climate during the past climate jumps. Stalagmites form when respira-
tionCO2–laden soil water drips onto them. The excessCO2 escapes into
the cave air, raising the CO3

2− concentration to the point where CaCO3

precipitates. L. Edwards at theUniversity ofMinnesotamade an important
 on June 8, 2017
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Fig. 5. Pattern of global warming predicted for the decade 2040 to 2050. Map shows the temperature anomaly calculated from subtracting the average temperature
of the past decade (that is, CE 2006 to CE 2016) from that predicted for CE 2040 to CE 2050. By this analysis, the differential heating of the hemispheres is predicted to
continue for at least the next half-century. Plots are based on results for the ensemble average of the CMIP5/IPCC RCP 8.5 modeling results (99, 100).
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breakthroughwhen he demonstrated that stalagmite calcite could be dated
with extreme accuracy based on the ratio of 230Th to 234U. Because growth
depends on the amount of precipitation, growth can come to a halt during
times of severe droughts. Thedurationof hiatuses produced in thisway can
be determined by detailed U/Th dating. In addition, the 18O to 16O in the
stalagmiteCaCO3 is thought to serve as aproxy formonsoonal rainfall. The
greater the monsoonal contribution, the lower the 18O to 16O in the cave
calcite.

Three records from southern Amazonia and one from northern
Amazonia (Fig. 6) indicate that a northward shift in Amazonian rainfall
occurred during this transition. For example, the color of the sediment
in the Cariaco Basin, north of Venezuela, underwent a sharp darkening
14.6 ky ago, documenting an increase in river runoff in northern South
America (34). At the same time, the iron-to-calcium ratio of the sedi-
ment on the continental margin of the Atlantic off eastern Brazil
changed in the opposite direction, documenting amajor decrease in riv-
er runoff (35). A hiatus in stalagmite growth at a cave in now-dry east-
ern Brazil commenced close to 14.6 ky ago, confirming that a drop in
rainfall over southern Amazonia occurred at that time (19). Last, a
closed-basin lake in the southern portion of Bolivia’s Altiplano dried
up at this time. This lake, known as Tauca, was three times larger than
today’s Lake Titicaca 14.6 ky ago (17, 36).

Equatorial Africa
Across the Atlantic in Africa, a major increase in tropical precipitation
occurred 14.6 ky ago. Cores recovered from the sediments of Lake Vic-
toria by T. Johnson of the University of Minnesota bottom out in a ter-
restrial soil. Lake sediment deposited immediately above this soil affords
a calendar year–converted radiocarbon age close to 14.6 ky ago (37).
Thus, during the time that the thermal equator was shifted to the south,
runoff from the rivers that feed Lake Victoria [in addition to other
African lakes (38)], must have been far lower than now, causing the
lake to go dry. Then, when the abrupt northward shift of the thermal
equator took place, the rivers came back to life and filled Lake Victoria
with water.

The abrupt rewetting of equatorialAfrica 14.6 ky ago is reinforced by
a detailed record of past hydroclimate provided by the isotopic com-
position of deuterium in leaf waxes from a marine core from the Gulf
of Aden, just offshore of the Horn of Africa (39). Together, the evidence
from these lacustrine and marine sediments suggests that there was far
less rainfall in Victoria’s drainage basin, and perhaps equatorial Africa
as a whole, before the shift of the thermal equator 14.6 ky ago.

Western United States
Firm evidence exists that closed-basin lakes of the westernUnited States
achieved their largest extents between 16 and 15 ky ago during theMys-
tery Interval (40), just before the switch 14.6 ky ago. Stalagmites from
caves in central and southern California (41), New Mexico (42), and
Nevada (43) also record peak winter moisture during this interval. In
the case of Lake Lahontan, the evidence comes from a camel bone found
in a back-beach deposit associated with its highest shoreline (44). A cal-
ibrated radiocarbon age of 15.66 ± 0.13 ky was obtained on bone colla-
gen [updated using the INTCAL13 radiocarbon calibration curve (45)].
Because camels get their carbon from terrestrial plants, there is no re-
servoir correction nor is there a concern about the presence of
secondary radiocarbon as is the case for shoreline CaCO3 tufas. The
Lake Lahontan water level dropped close to its present level after 14.6 ky
(46), at the same time as stalagmites throughout the southwestern
United States recorded a sharp decline in winter precipitation (41–43).
Putnam and Broecker, Sci. Adv. 2017;3 : e1600871 31 May 2017
Thus, 14.6 ky ago, the southward-shiftedmid-latitude storm track, which
is related to the position of the Pacific subtropical jet (12, 41, 47, 48),
brought themoisture of northern California and Oregon to southern
California and into the Great Basin (40, 46). Then, when the thermal
equator moved back to the north, the delivery of this extra moisture
was rerouted back to the north.

Monsoonal Asia
Amajor feature ofAsian hydroclimate during the last deglaciationwas
the rapid invigoration of South Asian monsoons 14.6 ky ago. Al-
though the most prominent feature of the oxygen isotope records in
stalagmites is a 20-ky cycle (49), which closely tracks the variation of
boreal summer insolation related to Earth’s precession cycle (see Fig. 7)
(50–53), superimposed upon this cycle are abruptmillennial changes in
monsoon strength that align with temperature swings registered in
the Greenland ice cores. The sense of the orbital cycles in both hemi-
spheres is that the stronger the summer insolation, the more depleted
is the heavy isotope—consistent with strongermonsoons. An insolation
driver of theAsianmonsoonmakes sense becausemonsoons are, in gen-
eral, related to seasonal heating of the land (53, 54).Here, our interest lies
in the millennial variations that punctuate the 20-ky insolation cycles.

All of the temperature jumps recorded inGreenland ice aremirrored
inChina’s stalagmite record (52, 55). TheAsianmonsoons strengthened
during interstadials and weakened during stadials (53). This pattern is
also observed in the reflectance of sediments deposited in the Arabian
Sea, offshore of the Indus River mouth (56). Abrupt changes in the In-
dianMonsoon runoff, as recorded in theArabian Sea, took place in con-
cert with the isotopic shifts registered in Greenland ice and Chinese
stalagmites. In particular, the warming spike 14.6 ky ago that was regis-
tered inGreenland icewas accompanied by a strengthening of the South
Asian monsoons, as recorded in Chinese stalagmites (50, 51) and the
Indus River fan sediments in the Arabian Sea (56).

Antarctic ice core insights into Northern
Hemisphere monsoons
One other recordmerits mention.Whereas stalagmite d18O records are
interpreted to reflect the strength of specific monsoonal systems, the
18O-to-16O ratio for atmospheric O2 trapped in ice core air bubbles pro-
vides clues into the past behavior of the Northern Hemisphere mon-
soon belt as a whole (57). The d18O of atmospheric O2 is currently
offset from that of ocean water by about 24‰. This offset is generated
by the preferential incorporation of isotopically light O2 (that is,
16O16O) during respiration. Modulating this offset is the isotopic
composition of rainfall. As shown in Fig. 8, precise and detailed oxygen
isotope measurements on the O2 stored in Antarctic ice reveal that the
signature of the isotopic composition of the O2 being added to the at-
mosphere is very similar to that exhibited by the Chinese stalagmites
(57). The amplitudes of the millennial-scale changes are about one
quarter of those in the Hulu Cave stalagmite d18O record (see Fig. 8).
This correspondence suggests that rainfall in the entire Northern Hem-
ispheremonsoon belt undergoes isotopic changes similar to those regis-
tered in southeast China. Of course, the isotopic changes in the
Southern Hemisphere monsoons oppose those in the north (58). How-
ever, because the northern monsoonal zone is much larger than the
southern one, the northern O2 production dominates the signal.

Summary of global hydroclimatic changes ~14.6 ky ago
Consistent with the south-to-north jump of the latitude of the thermal
equator, hydrological changes in the Southern Hemisphere occurred in
6 of 14
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antiphase with those in the Northern Hemisphere during the abrupt
change 14.6 ky ago (55). In the Northern Hemisphere, the Cariaco
Basin began to receive more terrigenous input from enhanced Ven-
ezuelan runoff, a consequence of a northward shift of the ITCZ (34).
Chinese stalagmites recorded a switch towardmore 18O-depleted values,
indicating an abrupt strengthening of the South Asian monsoons.
Closed-basin lakes at 40°N latitude in North America dried up, possibly
Putnam and Broecker, Sci. Adv. 2017;3 : e1600871 31 May 2017
in response to a northward-shifted Pacific storm track. Equatorial Africa
became wetter.

At the same time in the Southern Hemisphere, stalagmites in south-
ern Brazil recorded a switch toward more 18O-enriched values, signify-
ing a decrease in southern Amazonian tropical rainfall 14.6 ky ago (19).
The level of paleolake Tauca dropped as the ITCZ shifted to the north
(Fig. 6) (17, 36). Likewise, the Australianmonsoon weakened, as shown
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Fig. 6. Evidence in support of a northward shift in the location of the Amazonian rain belt 14.6 ky ago. (A) Drop in reflectance of sediments in the Cariaco Basin
caused by an increase in rainfall in Venezuela (34). B-A, Bølling-Allerød. (B) A drop in the ratio of soil debris to marine calcite in a sediment core suggests a decrease in
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Brazilian rainfall, the Chinese monsoons were becoming stronger (51).
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by a shift toward more enriched 18O values recorded in a stalagmite
from a cave in Flores (10°S) (58). This all coincided with the onset of
the Antarctic Cold Reversal in the Southern Hemisphere, which
involved an equatorward shift of the Subtropical Front and the austral
westerlies, sea-ice expansion, and overall cooling in the Southern Hem-
isphere middle and high latitudes (31).

The bottom line is that this shift in the latitude of the thermal equa-
tor 14.6 ky ago perturbed rainfall patterns over the entire planet, as
illustrated in Fig. 9. We argue that the same thing will happen because
anthropogenic CO2 preferentially heats the Northern Hemisphere with
respect to the Southern Hemisphere.
THE LITTLE ICE AGE SHIFT
Is it appropriate to assume that the hydroclimate dynamics of the last
glacial termination apply to the interglacial climate of today? Here, we
argue that shifts of the thermal equator, albeit smaller in magnitude,
have also occurred in the more recent past. For example, there is evi-
dence to suggest that a southward shift of the thermal equator may also
Putnam and Broecker, Sci. Adv. 2017;3 : e1600871 31 May 2017
have occurred during the more recent Little Ice Age (LIA) cold period
(ca. CE 1200 to CE 1850), when Earth’s climatic boundary conditions
were more like those of today (for example, same sea level, same ice
cover, same ocean circulation). This Northern Hemispheric cooling
(~1°C colder than today in the boreal summer) is well recorded by
Northern Hemisphere mountain glaciers (59–69) and by thermal pro-
files in Greenland ice (70). It was about 1/6 (in the south) to 1/10 (in the
north) of the cooling experienced during the LGM.

An important piece of evidence for a southward shift of the
thermal equator during the LIA comes from the records kept in the
sediments of lakes on a north-south trending chain of small islands in
the central equatorial Pacific (71). Lakes on islands situated beneath
the Pacific’s narrow rain belt overflow to the sea. These lakes have
sediments akin to those expected in well-flushed water bodies. How-
ever, lakes on islands outside the rain belt where evaporation exceeds
precipitation do not overflow. Sediments of these lakes consist of bac-
terial mats. A series of sediment cores from these islands suggest that
during the LIA, the rain belt was displaced ~800 km south of its cur-
rent position (71).
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Additional support for this southward shift comes from the compar-
ison of oxygen isotope records kept in Chinese stalagmites, as well as
lake sediments and ice cores from the tropical Andes of South America
(Fig. 10). For example, oxygen isotope signatures from Chinese stalag-
mites and Peruvian lacustrine carbonates are mirror images of one an-
other. The stalagmite from China shows a LIA bulge toward more
positive values (that is, weaker monsoons), whereas the oxygen isotope
curve based on lacustrine sediments from Peru shows a similar bulge
Putnam and Broecker, Sci. Adv. 2017;3 : e1600871 31 May 2017
but towardmore negative values (that is, strongermonsoons). A similar
pattern emerges when comparing the record of continental runoff off
the northern coast of Venezuela, as recorded by the percent Ti in sedi-
ments in the Cariaco Basin (72), with snowfall accumulation rates
determined from an ice core taken from the Quelccaya Ice Cap in the
Peruvian Andes (73). Runoff subsided in Venezuela, and precipitation
increased in Peru during the LIA, consistent with a southward shift of
the ITCZ and strengthening of the South American monsoon.
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In the Northern Hemisphere middle latitudes, arid regions became
wetter during the LIA. For example, river runoff in the eastern Sierra
Nevada increased and closed-basin lakes in the American southwest
rose toward their most recent highstands (74, 75). In addition, runoff
in the interior Asian deserts (61) and theMiddle East (76, 77) increased.
Wetting of northern mid-latitude drylands may have been related to a
strengthening and/or southward shift of the boreal westerlies that
attended the southward shift of the ITCZ during the LIA.

Evidence for LIA temperature change in the Southern Hemisphere
is less clear. However, evidence from Southern Hemisphere mountain
glaciers suggests that glacial advances that occurred during LIA time
were of a smaller magnitude than those in the north (59, 78–80).
Thermal records in Antarctic ice suggest that a mean annual cooling
occurred but that it was smaller than that recorded in Greenland (81),
implying a net “flattening” of the interhemispheric temperature con-
trast. Recent precipitation reconstructions based on lacustrine bio-
markers from the Galápagos Islands further support the case for a
southward shift of the ITCZ during the LIA (82, 83).

There is no consensus regarding what caused the LIA. The most
popular scenario involves a combination of more frequent volcanic
eruptions and weaker solar output. However, reconstructions of previ-
ous solar luminosity are highly uncertain. In addition, although volcanic
eruptions during that time period are well documented, the impact of
eruptions on incoming solar radiation is not. Another possibility is that
during this time period, the ocean was taking up heat. Evidence exists
that there was a 10 to 15% decrease in the production of deep water in
the northern Atlantic (84), inferred from a reconstruction of the tilt of
isopycnal horizons across the Florida Straits. Although causes and
consequences of the LIA remain uncertain, it appears that the Northern
Putnam and Broecker, Sci. Adv. 2017;3 : e1600871 31 May 2017
Hemisphere cooled more than the Southern Hemisphere, thereby
causing the thermal equator to shift to the south and, in turn, Earth’s
rain belts. We note that evidence is conflicting with regard to whether
the rain belts shifted south during the LIA (33, 71, 85) or whether the
hydroclimatic response to the LIA was a more complex mosaic of regional
changes [for example, the work of Yan et al. (86)]. It is important that LIA
hydroclimatic changes be better documented so that, if indeed a southward
shift in the thermal equator did occur, then the validity of applying this con-
cept to future greenhouse warming can be correspondingly strengthened.
THE ROLE OF SEASONALITY
Although the mean-annual temperature of the planet has warmed by
about 1°C over the past century, this warming has been neither spa-
tially nor seasonally uniform. In addition to the observation that the
NorthernHemisphere has warmed about twice asmuch as the Southern
Hemisphere since the CE 1950s, we show in Fig. 11 that most of this
interhemispheric temperature contrast has developedduring themonths
of December, January, and February (that is, boreal winter/austral
summer). In contrast, the rate of interhemispheric heating during
the months of June, July, and August (that is, boreal summer/austral
winter) has been more uniform, with about a degree of warming (on
average) registered in both hemispheres since the CE 1950s. Thus, we
consider that rainfall patterns that develop during boreal summer
might respond in the sense predicted by Held and Soden (1), with
tropical focusing of rainfall in the Northern Hemisphere monsoon re-
gions and further aridification of the mid-latitude drylands. On the
other hand, rainfall patterns developing during boreal winter may
be influenced by the addition of a northward shift of Earth’s thermal
equator. Another way of looking at this is that the thermal equator will
move progressively less far toward the south with each ensuing north-
ern winter. Specific hydrological impacts may include:

1) A northward shift of the Pacific subtropical jet during the boreal
winter, which will have the effect of “steering” moisture north and
away from SierraNevada and theGreat Basin of westernNorthAmerica
(12, 47, 48), further depletingwinter snowpacks that supply water for the
inhabitants of the southwestern United States (16, 87, 88).

2) A weakening of the Australian and South American monsoon
systems, which develop during austral summer.

3) A general northward shift of the winter jet over the North
Atlantic, steering moisture north and away from the Mediterranean
region, diminishing precipitation in the Middle East (89).

4) A decrease in the seasonal latitudinal range of the ITCZ, resulting
in the ITCZ extending less far south with each boreal winter.
FUTURE PROGNOSIS
If both tropical focusing of rainfall and a northward shift of tropical/
mid-latitude rain belts were to accompany the ongoing CO2 warming
as we suggest, then the following predictions can be made:

1) The tropics will become wetter, and the subtropics and middle
latitudes will become drier. This will be most noticeable in June, July,
and August. During these months, the interhemispheric temperature
gradient has not changed much over the past several decades.

2) Northern Hemisphere monsoon rainfall will intensify and that in
the Southern Hemisphere will weaken. The intensification of Northern
Hemispheremonsoon systems,whichdevelop in the boreal summer,might
be in response to the tropical focusing of the hydrological system under
awarmingworld, as suggested byHeld and Soden (1). Theweakening of
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Fig. 10. LIA isotopic records for the past 1300 years from Chinese stalagmites
[33°N (102)] and from Peruvian lacustrine carbonate sediments [11°S (103, 104)].
Note that the scales are in the opposite sense (that is, more negative is up for
China and down for Peru). During the LIA, 18O ratios recorded in China became
less negative and those in Peru became more negative. This is consistent with a
southward shift in the latitude of the thermal equator. The figure is adapted with
permissions from Broecker and Putnam (33). VPDB, Vienna Pee Dee belemnite;
AM, Australian monsoon; SASM, South Asian summer monsoon.
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Southern Hemisphere monsoons might occur as a consequence of a
northward shift of the thermal equator during boreal winter months.

3) The drylands of the western United States, inner Asia, and the
Middle East will become even drier.

4) Amazonia will shift to the north, making Venezuela wetter and
eastern Brazil and the Bolivian Altiplano drier.
Putnam and Broecker, Sci. Adv. 2017;3 : e1600871 31 May 2017
CAVEATS
With regard to future predictions, several caveats must be kept inmind:

1) Instead of being the consequence of differential hemispheric
heating by reduction of wintertime boreal sea ice, it will be the result
of differential hemispheric warming of land relative to sea (although
diminution of Arctic sea ice will no doubt play a role).
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Global seasonal temperature trends (°C)
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Fig. 11. The seasonal expression of global warming trends since CE 1951. Gridded temperature trends (left) and zonally averaged temperature trends (right) for
the boreal winter (December-January-February) (A) and summer (June-July-August) (B) seasons, calculated for the period spanning CE 1951 to CE 2015. Plots are based
on GISTEMP Reanalysis data set (96, 97). The interhemispheric temperature contrast appears to be a December-January-February phenomenon.
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2) It is possible that the ITCZ could shift northward even with
uniform heating of the polar hemispheres. This would be due to an
increase in the cross-equatorial energy transport that is expected
for a warming world (90).

3) During the intervals when the northernAtlanticwas coveredwith
ice, there was more dust in the northern atmosphere reinforcing the
hemispheric temperature contrast. Currently, the presence of anthropo-
genic sulfate in the northern atmosphere counters the CO2 warming.

4) Likewise, tropical precipitation in general, and the South Asian
monsoon system in particular, has not strengthened as predicted
(91–93). Anthropogenic aerosols may be suppressing the development
of Asian monsoons by blocking incoming solar radiation from heating
the Indian land surface (91, 94). A potentially positive outcome of re-
ducing air pollution would be a strengthening of the South Asian sum-
mer monsoon.

5) The reorganization of the ocean’s thermohaline circulation that
accompanied each of the glacial shifts in the thermal equator is less like-
ly to play a role as CO2 warms the world.

6) Influences of large Northern Hemisphere ice sheets and of land
exposed by lower sea level, whichmay have played some role in the hy-
droclimatic changes that occurred during the last deglaciation, will be
absent in future scenarios.
 on June 8, 2017
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CONCLUSIONS
Model-based simulations of the ongoing rise in atmospheric CO2 pre-
dict that the Northern Hemisphere will warm faster than the Southern
Hemisphere. The interhemispheric temperature difference created in
this way will increase with time until the rate of CO2 rise levels off
and ocean heating catches up with that for the atmosphere. The world’s
rain belts, at least during the December-January-February months, will
shift in concert with the interhemispheric temperature difference. Then,
as CO2 concentrations start to decrease, either because they are being
taken up by the ocean or purposefully captured and buried, the rain
belts will shift back to the south, at least during the boreal winter season.

Themagnitude of the shift in precipitation belts at the peak of the an-
thropogenic warming may be closer to that 14.6 ky ago than that for the
LIA. The high latitudes of the Northern Hemisphere may heat up by as
much as ~3°C more than in the Southern Hemisphere by CE 2050 with
continued CO2 rise. Superimposed upon impacts of the shifting thermal
equator, registered most strongly in the boreal winter season, will be the
intensification of tropical rainfall at the expense of rainfall in the sub-
tropics and middle latitudes, which may be expressed most prominently
duringboreal summer.Thiswill have a similar time trend following global
temperature rather than the interhemispheric temperature contrast.
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