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Here we discuss issues raised by Shulmeister et al. (2019a) in
relation to our recent paper (Barrell et al., 2019), which in turn
addresses some aspects of their earlier paper (Shulmeister et al.,
2018). We first comment on the puzzle of sample elevation er-
rors, then address geomorphological interpretations and end by
evaluating dating results and their interpretation.
1. GPS elevation errors

Shulmeister et al. (2019a,b) report that their incorrect elevations
were measured on the afternoon of 26 January 2016 New Zealand
Daylight Time (NZDT). It turns out their measurements coincided
with a c. 11-hour duration error in the Coordinated Universal Time
(UTC) offset parameters broadcast by some of the Global Posi-
tioning System (GPS) satellites, which caused a �13 ms error in
clocks controlled by GPS satellite time broadcasts (Yao et al., 2017).
Shulmeister et al. (2019b) attribute their elevation inaccuracies to
the UTC timing error, yet Kovach et al. (2016) found that the GPS
broadcast error had no impact on GPS positioning. Coincidentally
that same afternoon, one of us (AEP) was collecting surface
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exposure dating (SED) samples near Lake Tekapo, c. 47 km south-
west of the Butler Downs sampling site. At Tekapo, seven samples
were collected over a c. 5-hour period from midday and their lo-
cations determined by GPS (Table 1). Alerted by Shulmeister et al.
(2019a,b) to the UTC timing error, we independently estimated
ground elevation at the Tekapo sites using 20-metre-interval
topographic contours and the Satellite Radar Tracking Mission
(SRTM) digital elevation model (Table 1), using the method of
Barrell et al. (2019).

Considering just the uncorrected Tekapo GPS data to avoid any
possible remedial effect due to differential correction, the GPS el-
evations are within 10 m of the SRTM elevations (Table 1),
approximating the SRTM/GPS elevation relationship found at Butler
Downs in March 2018 by Barrell et al. (2019). We conclude that no
identifiable positioning errors arose using a Trimble receiver at
Tekapo on 26 January 2016. We have no reason to think the Garmin
hand-held GPS receiver used for the Shulmeister et al. (2018)
measurements calculates positions in a different way from that of
a Trimble receiver. The alignment of Tekapo GPS data with inde-
pendent assessment that GPS positioning was unaffected by the
UTC timing error (Kovach et al., 2016) leads us to the view that GPS
elevation errors reported from Butler Downs on 26 January 2016
NZDT await satisfactory explanation.
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Table 1
GPS survey data for SED samples from the Lake Tekapo area, measured on 26 January 2016 (NZDT) using a Trimble Geo7x GPS receiver. Latitude (lat) and longitude (long) are in
decimal degrees relative to the WGS 1984 datum. Date and time (24-hr format) of measurement is in both UTC and NZDT. Sample site elevations (Elev) comprise the un-
corrected (Uncorr) GPS field measurement and the corrected (Corr) value following differential correction (dGPS) against data collected at the Mount John Observatory
geodetic base station, c. 6 km southeast of the sampling area. The dGPS elevations are referenced to mean sea level and calculated uncertainty of the corrected values (dGPS
error Corr) is mostly±0.1m. Other elevations comprise Elev TC estimated from topographic contours and Elev SRTM estimated from the Satellite Radar TrackingMission digital
elevationmodel. Elev TC is referenced to sea level and Elev SRTM is referenced to theWGS84 Earth Gravitational Model (EGM 96). The uncorrected GPS elevations approximate
those that would be obtained by a hand-held receiver. The differentially corrected values (bold) are the ones we would rely on for age calculation. In the text, we discuss the
uncorrected GPS elevations in relation to the SRTM values.

Sample ID Lat (dd) Long (dd) Date
UTC

Time
UTC

Date
NZDT

Time
NZDT

Elev GPS
Uncorr (m)

Elev dGPS
Corr (m)

dGPS error
Corr (m)

Elev TC (m) Elev
SRTM (m)

TEK-16-10 �43.961143 170.427931 25-Jan 23:11 26-Jan 12:11 843.03 840.12 0.1 820e840 834
TEK-16-11 �43.960989 170.427931 25-Jan 23:57 26-Jan 12:57 841.29 841.35 0.1 820e840 834
TEK-16-12 �43.960470 170.427615 26-Jan 00:21 26-Jan 13:21 843.16 843.43 0.1 820e840 838
TEK-16-13 �43.950602 170.425322 26-Jan 01:36 26-Jan 14:36 858.24 859.78 0.8 840e860 859
TEK-16-14 �43.950064 170.425127 26-Jan 02:37 26-Jan 15:37 860.86 860.70 0.7 840e860 859
TEK-16-15 �43.948671 170.424708 26-Jan 03:14 26-Jan 16:14 861.53 861.83 0.1 840e860 858
TEK-16-16 �43.948366 170.424593 26-Jan 03:57 26-Jan 16:57 863.59 861.54 0.1 840e860 858
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2. Geomorphological interpretation

Sandstone is by far the dominant lithology of the ‘greywacke’
basement rock that forms the Rangitata catchment (Cox and
Barrell, 2007) and we agree that most moraine boulders are of
that composition, with occasional examples of other lithologies.
Thus, sandstone lithology in boulders on the high-level sampling
area of Butler Downs is not unexpected and needs no special
explanation, such as derivation from single-source rockfall. The
descriptor ‘boulder cluster’ is incompatible with multi-directional
views (Fig. 1bee in Shulmeister et al., 2019a) showing very few
large boulders.

Extended discussion of the post-glacial lake introduces no new
data and it is not explained how the ‘low elevation of the lateral
moraines on the Downs’ is relevant to lake extent or depth. We
have nothing to alter or add to the lake discussion in our paper.

The map in our paper is sourced from a 1:100,000-scale
geomorphological map (Barrell et al., 2011, 2013) which covers a
land area of c. 31,000 km2 across the central part of the South Is-
land, including the Rangitata valley, and provides a uniform
regional characterisation of glacial landforms on both sides of the
Southern Alps. Generalizations necessary for regional-scale carto-
graphic legibility on the Barrell et al. (2011, 2013) map include
exaggerated widths for some relatively prominent moraine ridges,
while most small moraine ridges are each depicted as a single line
(‘ice-contact slope’) within a moraine map unit. We regard the
Barrell et al. (2011, 2013) map as giving satisfactory scale-
appropriate characterisation of the Rangitata landforms. The ob-
jection to some kame terrace margins being mapped as lateral
moraines misses the point that kame terraces are ice-marginal
landforms and their valley-ward edges, where not modified by
later erosion, approximate the edge of the glacier that constrained
the marginal meltwater streams. Figure 1f in Shulmeister et al.
(2019a) shows small irregularities on many of the narrow terrace
surfaces, which led Barrell et al. (2011, 2013) to classify those
benches as moraines. Nevertheless, whether moraines or kame
terraces, their valley-ward edges approximate ice-contact slopes.
That same photograph shows good detail of the prominent lateral
moraine wall referred to in our paper, that starts at the bench just
above the arrowed minor terrace. The moraine wall comprises a
generally featureless and slightly gullied ice-contact slope, steepest
at the top, that descends to at least the forested middle ground. It is
a classic Southern Alps example of a landform typically produced
during sustained ice downwasting (Barrell et al., 2011).

The so-called ‘kettle landscape’ or ‘dead-ice topography’, said to
be ‘entirely missing’, is shown on our map but classified simply as
‘moraine’. Long views in several directions across this landform
(Fig. 1bee in Shulmeister et al., 2019a) show undulating to slightly
hummocky terrain with one broad depression, rather than a gla-
ciokarst terrain as implied by the nomenclature of Shulmeister et al.
(2018, 2019a). Although our March 2018 fieldwork confirmed
several large, widely-scattered, broad topographic depressions in
that area, these are common features of general moraine topog-
raphy in Southern Alps valleys.

Quaternary-age strata in the Southern Alps are generally seen
only in patchy, discontinuous, exposures in eroded gully or valley
walls, or vehicle-track cuttings. We estimate that stratigraphic
exposure comprises of the order of 1% by area of the landscape and
renders inaccurate the descriptor ‘abundant’ applied by
Shulmeister et al. (2019a). Exposures within glacial troughs
commonly contain remnants of relatively old sediments, as
Shulmeister et al. (2010a) show in the nearby Rakaia valley.
Southern Alps glacial and fluvioglacial land surfaces reflect the
most recent geomorphic activity and the underlying stratigraphic
units commonly reflect earlier erosional/depositional events un-
related to the present topography. Studies of the available scattered
exposures provide useful stratigraphic insights but have little if any
bearing on exposure dating of glacial landforms in the Rangitata
valley.

We appreciate the differences in the scales and approaches of
the landform mapping discussed above, but do not see them
materially influencing the question of timing of deglaciation, which
depends on direct chronological data. We reiterate the similarity of
the Butler Downs/Brabazon Downs landform signatures to those of
thewell-dated deglacial landform sequences of the Ohau and upper
Rakaia valleys mentioned in our paper.
3. Dating results

With the recalculations based on corrected sample elevations,
general agreement has been achieved on the boulder age calcula-
tions. However, difference remains regarding the age in-
terpretations, not aided by conflicting information whereby
Shulmeister et al. (2019b) infer a c. 2 ky duration of ice recession
from the mean age ±1s standard deviation (17.8± 0.9 ka) of their
dataset, but Shulmeister et al. (2019a) base their c. 2 ky gradual ice
recession on the oldest age of a sample set as representing the time
of moraine deposition. The latter estimation goes against the
guidance of Applegate et al. (2012) that reduced chi-squared values
of the order of 1 (e.g.1.7; Shulmeister et al., 2019b) call for the use of
mean SED age to estimate the time of moraine deposition.

We note that the Shulmeister et al. (2019a) landform age
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interpretation refers only to the Butler Downs. Using the oldest age
(c. 19.5 ka) from the morphostratigraphically-oldest dated moraine
and the oldest age from the morphostratigraphically-youngest
dated moraine (c. 17.6 ka), they conclude that ice recession took c.
1900 years. This evaluation neglects their Brabazon Downs sam-
pling area, where they obtained four ages from the
morphostratigraphically-youngest moraines of their study area
(Fig. 3 of Barrell et al., 2019, also the ice limit lines in Figure 1a of
Shulmeister et al., 2019a). Three of those four samples returned
ages of c. 18.6 ka. Properly applied, their approach should compare
the morphostratigraphically-oldest and youngest moraines of their
whole study area, with respective oldest ages of c. 19.5 and 18.6 ka
and find that c. 300 m of ice downwasting (Fig. 3 of Barrell et al.,
2019) occurred in c. 900 years. This is just a hypothetical
comment, because we disagree with the approach of considering
only the oldest ages of the upper Rangitata dataset.

The approach to age interpretation applied by Shulmeister et al.
(2018, 2019a) contrasts with previous SED studies by the Shul-
meister group in the Southern Alps (e.g. Shulmeister et al., 2010b;
Rother et al., 2014, 2015) and in recent compilations (e.g.
Shulmeister et al., 2019c) which employed mean age calculations,
an approach with which we agree. We consider that Shulmeister
et al. (2018, 2019a) have not made a convincing case for slow ice
recession near the end of the last glaciation in the upper Rangitata
valley. In our view, the application of statistics to
morphostratigraphically-grouped ages indicates that rapid ice
recession was in progress in the upper Rangitata valley at c. 18 ka.
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